ВЕСЦІ НАЦЫЯНАЛЬНАЙ АКАДЭМІІ НАВУК БЕЛАРУСІ № 2 2005 СЕРЫЯ АГРАРНЫХ НАВУК

УДК 633.2.03:631.5/.8:546.36:546.42

А. Г. ПОДОЛЯК, Т. В. АРАСТОВИЧ, В. П. ЖДАНОВИЧ

РАДИОЛОГИЧЕСКАЯ ОЦЕНКА АГРОХИМИЧЕСКИХ ПРИЕМОВ УЛУЧШЕНИЯ ЛУГОВ, ЗАГРЯЗНЕННЫХ ¹³⁷Cs И ⁹⁰Sr В РЕЗУЛЬТАТЕ АВАРИИ НА ЧЕРНОБЫЛЬСКОЙ АЭС

Институт почвоведения и агрохимии НАН Беларуси Гомельский территориальный отдел сельскохозяйственной радиологии

(Поступила в редакцию 14.03.2005)

Введение. Выбор того или иного способа улучшения луговых угодий должен определяться минимальными экономическими затратами и основываться на эффективности уменьшения потоков радионуклидов, поступающих к человеку и образующих дозу внутреннего облучения. Как отмечают ряд исследователей (Р. М. Алексахин, С. В. Фесенко, Н. И. Санжарова, И. М. Богдевич, Ю. М. Жученко, С. К. Фирсакова и др.), применение комплекса агротехнических и агрохимических мероприятий на лугах различных типов в первые годы после аварии на Чернобыльской АЭС (1987—1992) обеспечило 3—8-кратное снижение перехода ¹³⁷Сѕ в травяные корма, что позволило в среднем в 2—2,5 раза уменьшить дозы внутреннего облучения населения, накопляющихся за счет потребления в пищу молока и мяса. В последующий период после аварии (1992—2005) существенно снизилась эффективность защитных мероприятий (в среднем на 20—50%), направленных на уменьшение доз внутреннего облучения, поэтому необходимо разработать более совершенную систему радиологической оценки защитных мероприятий, применяемых в растениеводстве и луговодстве [1—3].

Научные исследования, результаты которых были получены авторами на протяжении 1992—2001 гг. в рамках Государственной программы Республики Беларусь по минимизации и преодолению последствий катастрофы на Чернобыльской АЭС по темам: «Реабилитация загрязненных территорий. Социально-экономическое развитие районов, пострадавших от Чернобыльской катастрофы» (№ госрегистрации 19991381; 20021019), «Разработка интегрированных систем ведения сельского хозяйства на загрязненных радионуклидами территориях» (№ госрегистрации 19972281; 20013125), использованы при подготовке следующих нормативных документов: «Руководство по ведению агропромышленного производства в условиях радиоактивного загрязнения земель Республики Беларусь на 1997—2000 гг.» (Минск, 1997); «Рекомендации по использованию загрязненных радионуклидами пойменных земель Белорусского Полесья» (Гомель, 2001); «Рекомендации по ведению агропромышленного производства в условиях радиоактивного загрязнения земель Республики Беларусь» (Минск, 2003); «Рекомендации по оптимизации лугового кормопроизводства на естественных и улучшенных кормовых угодьях в условиях радиоактивного загрязнения» (Гомель, 2003); «Рекомендации по безопасному проживанию и ведению личного подсобного хозяйства в условиях радиоактивного загрязнения территорий» (Минск, 2003); «Рекомендации по улучшению суходольных и низинных лугов, подвергшихся радиоактивному загрязнению» (Минск, 2004).

Цель работы — по результатам многолетних исследований дать радиологическую и экономическую оценки различных агрохимических и агротехнических способов улучшения суходольных, заболоченных и пойменных лугов и на их основе предложить производственные полезно обоснованные контрмеры, внедрение которых обеспечит увеличение продуктивности травостоя и увеличение кормов, отвечающих требованиям «Республиканских допустимых уровней содержания 137 Cs и 90 Sr в сельскохозяйственных кормах на загрязненных радионуклидами территориях».

Материалы и методы исследования. На протяжении 1992—2001 гг. в условиях многолетних стационарных многофакторных опытов на загрязненных кормовых угодьях Гомельской

области установлено влияние различных агротехнических и агрохимических способов улучшения основных типов лугов на изменение величины коэффициентов перехода 137 Cs и 90 Sr в естественный травостой и урожай многолетних злаковых трав. Почвенная, радиологическая и агрохимическая характеристики экспериментальных участков и описание применяемых защитных мероприятий представлены в табл. 1.

Таблица 1. Почвенная, агрохимическая, радиологическая и ботаническая характеристики объектов исследования и применяемых агрохимических мероприятий

Суходольный луг	Заболоченный луг	Пойменный луг									
д. Савичи (Брагинский р-н)	д. Дублин (Брагинский р-н)	д. Тульговичи (Хойникский р-н)									
Тип почвы											
дерново-подзолистая, песчаная, глееватая	торфяно-болотная низинного типа	аллювиальная, дерново-глееватая, песчаная									
Плотность радиоактивного загрязнения, кБк/м2 (Ки/км2)											
¹³⁷ Cs - 1026 (27,7) ⁹⁰ Sr - 162 (4,4)	137 Cs $-$ 250 (6,7) 90 Sr $-$ 65 (1,7)	¹³⁷ Cs - 864 (23,4) ⁹⁰ Sr - 72 (1,9)									
	Основные агрохимические показатели										
$ \begin{array}{l} \Gamma_{\text{Умус}}-1,7-2,2\%, \\ \text{рH}_{(\text{KCI})}-3,5-5,7 \\ \text{Hr}-2,3-8,8 \text{ смоль/кг} \\ \text{S}-1,8-17,3 \text{ смоль/кг} \\ \text{V}-16-82\% \\ \Piодвижный \text{K}_2\text{O}-57-216 \text{ мг/кг} \\ \Piодвижный \text{P}_2\text{O}_5-25-181 \text{ мг/кг} \\ \text{Обменный Ca}-235-1280 \text{ мг/кг} \\ \text{Обменный Mg}-55-630 \text{ мг/кг} \\ \text{Иок.}-0,22-0,88 \\ \end{array} $	Зольность — $16,0-17,5\%$, $pH_{(KCl)} - 5,4-5,9$ $Hr = 20,0-31,6$ смоль/кг $S = 65-75$ смоль/кг $V = 66,5-79,8\%$ Подвижный $K_2O = 250-1200$ мг/кг Подвижный $P_2O_5 = 176-670$ мг/кг Обменный $Ca = 9220-12375$ мг/кг Обменный $Mg = 930-1084$ мг/кг ок. $= 0,48-0,98$	Гумус — 3,4—4,2%, $pH_{(KCI)}$ — 5,0—6,3 Hr — 0,96—2,3 смоль/кг S — 4,2—10,5 смоль/кг V — 65,4—90,5% II Подвижный II II II II II II II II									
Доминирующие виды в растительном покрове (естественный травостой)											
Тысячелистник обыкновенный (Achillea millefolium L.), щавель малый (кислый) (Rumex acetosa L.), белоус торчащий (Nardus srticta L)., овсяница красная (Festuca rubra L.), полевица белая (Agrostis alba L.)	Крапива двудомная (Urtica dioica L.), лапчатка гусиная (Potentilla anserina L.), лютик едкий (Ranunculus acris L.) щучка дернистая (Deschampsia caespitosa L.), мятлик болотный (Poa polustris L.), осока острая (Carex acuta L.)	Мятлик луговой (Poa pratense L.), лисохвост луговой (Alopecurus pratensis L.), клевер луговой (Trifolium pratense L.), клевер белый (Trifolium repens L.), горошек мышиный (Vicia cracca L.)									

Агротехнические и агрохимические защитные мероприятия (см. табл.2—4)

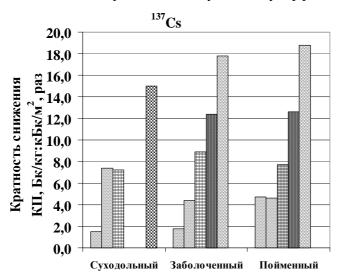
Поверхностное улучшение путем внесения минеральных удобрений и доломитовой муки на дернину без создания культурного травостоя

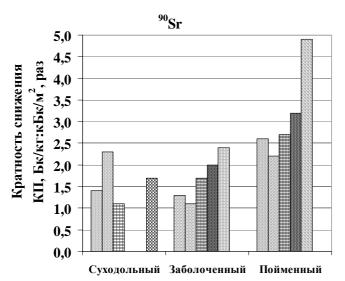
Перезалужение с использованием различных видов обработки почвы (дискование, вспашка) и их сочетания и создание культурного травостоя

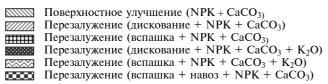
Перезалужение с использованием различных видов обработки почвы в сочетании с применением обычных доз минеральных удобрений и доломитовой муки и создание культурного травостоя

Применение повышенных доз (120—150 кг д. в.) калийных удобрений при перезалужении с последующим ежегодным применением обычных доз минеральных удобрений под каждый укос многолетних сеяных трав

Применение повышенных доз (до 60 т/га) органических удобрений при перезалужении суходольных лугов с последующим ежегодным применением обычных доз минеральных удобрений под каждый укос многолетних сеяных трав


Плотность загрязнения почвы ¹³⁷Сѕ и ⁹⁰Ѕг на экспериментальных участках определяли согласно «Методике крупномасштабного агрохимического и радиологического исследования почв сельскохозяйственных угодий Республики Беларусь» [4]. Обработку почвы, посев и уход за травостоем при залужении (1992—1993) и перезалужении (1997) экспериментальных участков проводили в соответствии с агротехническими правилами, рекомендуемыми к применению на загрязненных радионуклидами кормовых угодьях Гомельской области. Перезалужение экспериментальных участков проводили с помощью серийной сельскохозяйственной техники, имеющейся в хозяйствах Брагинского и Хойникского районов: дискование в 4 следа тяжелыми дисковыми боронами БДТ-7,0 на глубину 10—12 см; вспашку плугом ПЛН-5—35 на глубину 18—20 см; предпосевную культивацию — АКШ-7,2 на глубину 6—8 см; посев травосмеси — агрегатом для перезалужения АПР—2,6 на глубину 2—4 см, агрегатируемых с трак-


тором T-150К в оптимальные для региона сроки (суходольного и заболоченного — с 20.04. по 10.05.97, пойменного — с 20.07. по 10.08.97). В экспериментах высевалась травосмесь (30 кг/га) из многолетних злаковых трав: овсяницы луговой (14,5 кг/га), тимофеевки луговой (10,5 кг/га), костреца безостого (5,0 кг/га).


Содержание 137 Cs в образцах определяли на γ -спектрометрических комплексах «Canberra» и «Oxford», а 90 Sr — радиохимическим методом по стандартной методике ЦИНАО с радиометрическим окончанием на α - β счетчике «Canberra-2400». Аппаратурная ошибка измерений не превышала 15% [5].

Для количественной оценки поступления радионуклидов из почвы в растения рассчитывали коэффициенты пропорциональности (КП) — отношение содержания 137 Cs и 90 Sr в единице массы растения (Бк/кг) к плотности загрязнения единицы площади почвы (кБк/м²) [6]. Полученные данные обрабатывались методами дисперсионного и регрессионного анализов с использованием компьютерного программного обеспечения (Excel 7.0, Statistic 7.0) [7].

Экономико-радиологическую оценку эффективности различных способов перезалужения

Кратность снижения величины коэффициентов перехода 137 Cs и 90 Sr в травостой в зависимости от способов улучшения основных типов лугов, 1992-2001 гг.

лугов и применяемых систем удобрений осуществляли по методическим разработкам ведущих белорусских (И. М. Богдевич, Г. В. Василюк [8], В. Ф. Миненко [9], Ю. М. Жученко [2], С. К. Фирсакова [3]) и российских ученых-радиобиологов (Р. М. Алексахин, С. В. Фесенко, Н. И. Санжарова, А. В. Панов, Ю. А. Иванов [10-14]) с использованием собственных результатов спектрометрического, радиохимического, качественного и зоотехнического анализов кормов (сена), полученных в конкретных стационарных экспериментах. Затраты на технологические процессы (обработку почвы, внесение удобрений, посев травосмесей, уборку и доработку сельскохозяйственной продукции) учитывали в ценах по состоянию на 01.01.2001 и выражали в долларах США по курсу Национального банка Республики Беларусь.

Результаты и их обсуждение. Результаты радиологической оценки различных способов поверхностного улучшения и перезалужения основных типов лугов Белорусского Полесья показали, что поверхностное улучшение целесообразно применять только на пойменных лугах, где оно экономически оправдано (прибыль ~ 0,3-0,4 у. е. с каждого гектара) и обеспечивает прибавку урожая сена до 40—45 ц/га при оптимальных значениях качественного и химического составов травостоя, соответствующих зоотехническим требованиям (содержание сырого протеина — 13,4%, сырой клетчатки -25,2, сырого жира -3,07, БЭВ — 51,4, K_2O — 2,23, P_2O_5 — 0,63, Ca - 0.88, Mg - 0.35%, отношение Ca/P -1,97 раза, отношение K/(Ca + Mg) — 1,84— 2,12 раза, питательная ценность — 0,52 к. е.), при уровне интенсификации 10-15% и экономии коллективной дозы до 0,0055

Таблица 2. Радиологическая и экономическая оценки эффективности применения минеральных и известковых удобрений при различных способах улучшения пойменного луга, в среднем за 1992—2001 гг.

Номер на улуч- жай-	Уро- жай- ность,	Актив сена,		КП, Бк/кг: кБк/м ²		Вынос урожаем, кБк/га		Кратность снижения, раз		Активность молока, Бк/л		Чистый доход,	Рента- бель- ность,	Величина предотвращенной дозы, челЗв	Стоимость пред- отвращенной дозы у. е./челЗв	
	у. е. ц/	ц/га	¹³⁷ Cs	⁹⁰ Sr	¹³⁷ Cs	⁹⁰ Sr	¹³⁷ Cs	⁹⁰ Sr	¹³⁷ Cs	⁹⁰ Sr	¹³⁷ Cs	⁹⁰ Sr	у. е.	%	ΔD	Δε
1	_	31,3	2924	980	3,39	13,71	91,5	30,7	_	_	292	13,7	_	_	_	_
2	63,8	58,6	781	619	0,91	8,65	45,8	36,3	3,73	1,58	78	8,7	18,56	29,1	0,0052	12369
3	78,7	67,3	1050	714	1,22	9,99	70,7	48,1	2,78	1,37	105	10,0	29,91	38,0	0,0045	17448
4	83,8	71,3	623	469	0,72	6,56	44,4	33,4	4,71	2,09	62	6,6	34,53	41,2	0,0055	15133
5	9,7	35,0	840	396	0,97	5,54	29,4	13,8	3,49	2,47	84	5,5	1,47	15,2	0,0050	1934
6	90,2	73,2	620	381	0,72	5,33	45,4	27,9	4,71	2,57	62	5,3	36,21	40,2	0,0055	16266
7	15,8	39,5	2144	1323	2,48	18,51	84,7	52,3	1,37	0,74	214	18,5	_	_	0,0019	8416
8	92,1	72,6	1044	561	1,21	7,85	75,8	40,8	2,80	1,75	104	7,9	27,39	35,9	0,0045	20354
9	99,4	80,3	356	352	0,41	4,92	28,6	28,2	8,27	2,79	36	4,9	39,51	47,3	0,0062	16082
10	101,7	76,3	628	453	0,73	6,34	47,9	34,6	4,64	2,16	63	6,3	27,17	31,6	0,0055	18403
11	112,6	88,3	235	310	0,27	4,32	20,8	27,3	12,56	3,17	24	4,3	50,39	52,1	0,0065	17398
12	19,3	42,3	1058	1106	1,23	15,46	44,8	46,8	2,76	0,89	106	15,5	_	_	0,0045	4297
13	97,9	78,2	607	380	0,70	5,32	47,5	29,7	4,84	2,58	61	5,3	31,78	40,4	0,0056	17555
14	106,6	87,5	272	291	0,32	4,07	23,8	25,5	10,59	3,37	27	4,1	49,07	56,3	0,0064	16701
15	108,4	82,8	383	357	0,44	5,00	31,7	29,6	7,70	2,74	38	5,0	35,52	39,9	0,0061	17725
16	118,5	93,9	151	201	0,18	2,82	14,2	18,9	18,83	4,86	15	2,8	56,47	57,0	0,0067	17755

П р и м е ч а н и е. 1. Естественный травостой (абсолютный контроль); 2. $N_{60}P_{60}K_{120}$ поверхностно; 3. $N_{90}P_{60}K_{120}$ поверхностно; 4. $N_{90}P_{60}K_{180}$ поверхностно; 5. Доломитовая мука 3 т/га поверхностно; 6. Доломитовая мука 3 т/га + $N_{90}P_{60}K_{180}$ поверхностно; 7. Дискование без удобрений; 8. Дискование + $N_{90}P_{60}K_{120}$; 9. Дискование + $N_{90}P_{60}K_{120}$ + K_{150} ; 10. Доломитовая мука 3 т/га, дискование + $N_{90}P_{60}K_{120}$; 11. Доломитовая мука 3 т/га, дискование + $N_{90}P_{60}K_{120}$ + K_{150} ; 12. Дискование, вспашка без удобрений; 13. Дискование, вспашка + $N_{90}P_{60}K_{120}$; 14. Дискование, вспашка + $N_{90}P_{60}K_{120}$ + K_{150} ; 15. Дискование, вспашка, доломитовая мука 3 т/га, дискование + $N_{90}P_{60}K_{120}$ + K_{150} .

чел.-Зв в год при средней ее стоимости 15000-16000 у. е./чел.-Зв в результате снижения поступления в травы до 5 раз 137 Cs и до 2,5 раз 90 Sr (рис., табл. 2) [15—17].

На основе расчетов доказано, что, несмотря на высокую стоимость предотвращенной коллективной дозы (около 20000 у. е./чел.-Зв), наиболее эффективный способ перезалужения суходольных лугов — послойное внесение доломитовой муки, 60 т/га подстилочного навоза с последующим ежегодным внесением минеральных удобрений в дозе $N_{90}P_{60}K_{150}$ в два приема, который обеспечивает до 15 раз снижение перехода 137 Сѕ и до 2 раз 90 Ѕг в многолетние злаковые травы при самой высокой величине предотвращенной коллективной дозы (0,0045 чел.-Зв в год), низких затратах энергии на формирование 1 т прибавки урожая (5,7—6,0 ГДж) и уровне интенсификации 30% по сравнению с другими способами улучшения данного типа луга. Этот способ улучшения позволяет получать высокую прибавку урожая (до 60 ц/га сена или 240—250 ц/га зеленой массы), который отвечает зоотехническим требованиям по большинству показателей (содержание сырого протеина 14,4—16,1%, сырой клетчатки — 24,1—28,5, содержание жира — 3,56—4,32, содержание K_2O — 1,88—2,76, P_2O_5 — 0,40—0,50, Ca — 0,66—0,78, Ca — 0,24—0,29%, отношение Ca/P — 1,56—1,68 раза, отношение Ca/P — 0,50—0,55 к. е.) (табл. 3).

Результаты комплексной оценки дают основание считать самым эффективным способом перезалужения заболоченных лугов — внесение 2 т/га доломитовой муки и повышенных доз калия в составе полного минерального удобрения $N_{90}P_{60}K_{250}$ (K_{120} под вспашку и K_{130} после вспашки) с последующим ежегодным внесением минеральных удобрений в дозе $N_{90}P_{60}K_{120}$ в два приема, что позволяет обеспечить прибавку урожая сена 70—75 ц/га с оптимальными показателями качественного и химического составов (питательная ценность — 0,50—0,51 к. е., содержание сырого протеина — 14,5—14,7%, сырой клетчатки — 22,9—23,2, сырого жира — 3,90—3,93, БЭВ — 50,8—51,1, K_2O — 2,44—2,46, P_2O_5 — 0,53—0,54, Ca — 0,83—0,85, Ca — 0,27—0,28, отношение Ca/P — 1,59—1,61 раза, отношение Ca/P — 2,17—2,19 раза) и до 18 раз снизить переход в травостой Ca/P0 и до 2,5 раз — Ca/P0 при высоком уровне рентабельности (60—65%), низкой стоимости предотвращенной коллективной дозы (4000—4240 у. е./чел.-3в) и дает возможность получения молока, от потребления которого предотвращенная коллективная доза составит 0,030 чел.-3в в год (табл. 4).

Таблица 3. Радиологическая и экономическая оценки эффективности применения минеральных, органических и известковых удобрений при различных способах улучшения суходольного луга, в среднем за 1992—2001 гг.

Но- мер опы-	мер опы- пы- ты на жай- жай- ность,		сена, Бк/кг		КП, Бк/кг: кБк/м ²		Вынос урожаем, кБк/га		Кратность снижения, раз		Активность молока, Бк/л		y. e.	Рента- бель- ность,	Величина пред- отвращенной дозы, челЗв	Стоимость предотвращенной дозы у. е./челЗв	
та	та шение, ц/га	ц/га	ц/га	¹³⁷ Cs	⁹⁰ Sr	¹³⁷ Cs	⁹⁰ Sr	¹³⁷ Cs	⁹⁰ Sr	¹³⁷ Cs	⁹⁰ Sr	¹³⁷ Cs	⁹⁰ Sr	(\$ US)	%	ΔD	Δε
1	_	11,1	4937	4254	3,61	18,21	54,8	47,2	_	_	494	59,6	_	_	0,0016	65452	
2	104,4	20,8	3325	3130	2,43	13,40	69,2	65,1	1,49	1,36	333	43,8	-87,65	-83,9	0,0011	10295	
3	10,9	16,9	3867	3381	3,54	22,08	65,4	57,1	1,02	0,82	387	47,3	_	_	0,0044	32270	
4	140,4	51,0	540	1209	0,49	7,90	27,5	61,7	7,37	2,31	54	16,9	-31,81	-25,5	-0,0006	-20213	
5	12,8	14,2	5577	5747	3,78	45,08	79,2	81,6	0,96	0,40	558	80,5	_	_	0,0042	33311	
6	138,5	46,2	735	2073	0,50	16,25	34,0	95,8	7,22	1,12	74	29,0	-39,52	-32,1	0,0038	10207	
7	75,9	36,0	1141	2671	0,77	20,95	41,1	96,2	4,69	0,87	114	37,4	7,32	12,1	0,0045	10317	
8	201,1	70,7	351	1375	0,24	10,78	24,8	97,2	15,04	1,69	35	19,3	15,22	8,2	0,0045	14354	

 Π р и м е ч а н и е. 1. Естественный травостой (абсолютный контроль); 2. Доломитовая мука 15 т/га, + $N_{90}P_{100}K_{150}$ поверхностно; 3. Дискование без удобрений; 4. Доломитовая мука 15 т/га, дискование + $N_{90}P_{100}K_{150}$; 5. Дискование, вспашка без удобрений; 6. Доломитовая мука 5 т/га, дискование, вспашка, доломитовая мука 10 т/га + $N_{90}P_{100}K_{150}$; 7. Навоз 60 т/га, дискование, вспашка; 8. Навоз 60 т/га, доломитовая мука 5 т/га, дискование, вспашка, доломитовая мука 10 т/га + $N_{90}P_{100}K_{150}$.

Таблица 4. Радиологическая и экономическая оценки эффективности применения минеральных и известковых удобрений при различных способах улучшения заболоченного луга, в среднем за 1992—2001 гг.

Но- мер опы-	мер улуч- жай	Уро- жай- ность,	Активность сена, Бк/кг		КП, Бк/кг: кБк/м ²		Вынос урожаем, кБк/га		Кратность снижения, раз		Активность молока, Бк/л		Чистый доход, у. е.	Рента- бель- ность,	Величина предотвращенной дозы, челЗв	Стоимость предотвращенной дозы у. е./челЗв
та		ц/га	¹³⁷ Cs	⁹⁰ Sr	¹³⁷ Cs	⁹⁰ Sr	¹³⁷ Cs	⁹⁰ Sr	¹³⁷ Cs	⁹⁰ Sr	¹³⁷ Cs	⁹⁰ Sr	(\$ US)	%	ΔD	Δε
1	_	26,4	13493	534	45,29	9,41	356,2	14,1		1	1349	7,5	_	_	_	_
2	70,9	47,9	7694	405	25,83	7,15	368,5	19,4	1,75	1,32	769	5,7	-23,46	-33,1	0,014	4934
3	17,0	35,8	7398	433	27,85	9,40	264,8	15,5	1,63	1,00	740	6,1	_	_	0,015	1100
4	90,8	66,1	3319	404	12,50	8,77	219,4	26,7	3,62	1,07	332	5,7	15,86	21,5	0,024	3827
5	101,5	78,0	1687	318	6,35	6,89	131,6	24,8	7,13	1,37	169	4,5	37,95	44,9	0,028	3676
6	97,8	69,3	2752	390	10,36	8,45	190,7	27,0	4,37	1,11	275	5,5	18,31	22,7	0,025	3908
7	105,7	77,8	1386	310	5,22	6,73	107,8	24,1	8,68	1,40	139	4,3	33,14	37,4	0,028	3762
8	107,7	69,0	2449	353	9,22	7,67	169,0	24,4	4,91	1,23	245	4,9	7,53	8,3	0,026	4168
9	124,6	97,2	568	245	2,14	5,31	55,2	23,8	21,16	1,77	57	3,4	57,77	58,6	0,030	4102
10	26,1	43,3	4117	359	14,47	6,66	178,3	15,5	3,13	1,41	412	5,0	_	_	0,023	1151
11	112,4	88,8	1971	309	6,93	5,73	175,0	27,4	6,54	1,64	197	4,3	48,25	55,9	0,027	4122
12	119,8	96,7	824	229	2,90	4,25	79,7	22,1	15,62	2,21	82	3,2	61,14	65,2	0,030	4013
13	115,2	86,9	1457	291	5,12	5,40	126,6	25,3	8,85	1,74	146	4,1	39,80	44,6	0,028	4051
14	127,6	100,9	724	215	2,55	4,00	73,1	21,7	17,76	2,35	72	3,0	65,43	64,4	0,030	4239
15	123,9	85,2	1333	257	4,69	4,76	113,6	21,9	9,66	1,98	133	3,6	26,07	26,6	0,029	4239
16	108,2	80,8	1036	255	3,64	4,73	83,7	20,6	12,44	1,99	104	3,6	39,35	43,2	0,029	3730

 Π р и м е ч а н и е. 1. Естественный травостой (абсолютный контроль); 2. Доломитовая мука 2 т/га + $N_{90}P_{60}K_{130}$ поверхностно; 3. Дискование без удобрений; 4. Дискование + $N_{90}P_{60}K_{130}$; 5. Дискование + $N_{90}P_{60}K_{130}$ + K_{120} ; 6. Доломитовая мука 2 т/га, дискование + $N_{90}P_{60}K_{130}$ + K_{120} ; 8. Доломитовая мука 2 т/га, дискование + $N_{90}P_{60}K_{130}$ + K_{120} ; 9. Дискование, вспашка, доломитовая мука 2 т/га, дискование + $N_{90}P_{60}K_{130}$ + K_{120} ; 10. Дискование, вспашка без удобрений; 11. Дискование, вспашка + $N_{90}P_{60}K_{130}$; 12. Дискование, вспашка + $N_{90}P_{60}K_{130}$ + K_{120} ; 13. Дискование, вспашка, доломитовая мука 2 т/га, дискование + $N_{90}P_{60}K_{130}$ + K_{120} ; 14. Дискование, вспашка, доломитовая мука 2 т/га, дискование, вспашка, доломитовая мука 2 т/га, дискование + $K_{90}P_{60}K_{130}$ + K_{120} ; 15. Дискование + $K_{90}P_{60}K_{130}$ + K_{120} ; 16. Доломитовая мука 2 т/га, дискование + $K_{90}P_{60}K_{130}$ + K_{120} ; 16. Доломитовая мука 2 т/га, дискование + $K_{90}P_{60}K_{130}$ + K_{120} ; 16. Доломитовая мука 2 т/га, дискование + $K_{90}P_{60}K_{130}$ + K_{120}

Установлено, что в условиях Белорусского Полесья применение защитных мероприятий на лугах считается оправданным, если стоимость предотвращенной коллективной дозы на 1 чел.-Зв в результате их использования находится в пределах 10000—20000 долларов США. Поэтому проведение защитных мероприятий на заболоченных лугах, представленных торфяно-болотными почвами, в отдаленный период после аварии (2000—2010) более эффективно (стоимость предотвращенной коллективной дозы < 5000 у. е. чел.-Зв) по сравнению с пойменными (12000—20000 у. е. чел.-Зв) и суходольными (около 20000 у. е. чел.-Зв) лугами, представленными минеральными почвами [18—20].

Результаты исследований вошли в ряд рекомендаций по внедрению в сельскохозяйственное производство комплекса агротехнических и агрохимических мероприятий (системы обработки почвы, системы применения удобрений, видов травосмесей, сроков и норм их высева, технологических схем улучшения, системы ухода за вновь созданными кормовыми угодьями) при перезалужении кормовых угодий на различных типах лугов, выполнение которых обеспечивает увеличение продуктивности травостоя и получение кормов (сена, зеленой массы, сенажа), отвечающих требованиям «Республиканских допустимых уровней содержания ¹³⁷Сѕ и ⁹⁰Sг в сельскохозяйственном сырье и кормах (РДУ)» на загрязненных радионуклидами территориях.

Заключение. Применение агрохимических приемов улучшения кормовых угодий, загрязненных радионуклидами (контрмер), должно обосновываться расчетами следующих показателей комплексной радиологической оценки: величиной предотвращенной коллективной дозы (чел.-Зв), стоимостью снижения единицы предотвращенной коллективной дозы (тыс. долларов США на 1 чел.-Зв) и кратностью снижения концентрации ¹³⁷Cs и ⁹⁰Sr в кормах после их внедрения.

Внедрение защитных мероприятий на заболоченных лугах, представленных торфяно-болотными почвами, в отдаленный период после аварии (2000—2010) более эффективно (стоимость предотвращенной коллективной дозы < 5000 у. е./чел.-Зв) по сравнению с пойменными (12000—20000 у. е./чел.-Зв) и суходольными (около 20000 у. е./чел.-Зв) лугами, представленными минеральными почвами.

Литература

- 1. Фесенко С. В., Панов А. В., Алексахин Р. М // Радиац. биол. Радиоэкол. 2001. Т. 41, № 4. С. 415—426.
- 2. Ж у ч е н к о Ю. М. Математическое моделирование потоков радионуклидов из сельскохозяйственных и естественных экосистем с целью радиационной реабилитации загрязненных территорий: Автореф. дис.... д-ра биол. наук. Обнинск, 1998.
- 3. Ф и р с а к о в а С. К. Луговые биогеоценозы как критические радиоэкологические системы и принципы ведения луговодства в условиях радиоактивного загрязнения (на примере Белорусского Полесья после аварии на ЧАЭС): Дис. ... д-ра биол. наук. Обнинск, 1992.
- 4. Богдевич И. М., Лапа В. В., Барашенко В. В. и др. Крупномасштабное агрохимическое и радиологическое обследования почв сельскохозяйственных угодий Беларуси: Метод. указания. Мн., 2001.
- 5. К у з н е ц о в А. В., С и л и н В. И., П а в л о ц к а я Φ . И. и др. Методические указания по определению 90 Sr и 137 Cs в почвах и растениях. М., 1985.
 - 6. Доспехов Б. А. Методика полевого опыта. М., 1979.
 - 7. Алексахин Р. М., Корнеев Н. А. Сельскохозяйственная радиоэкология. М., 1991.
- 8. Богдевич И. М., Василюк Г. В., Круглов Л. В. и др. Методика определения агрономической и экономической эффективности удобрений и прогнозирования урожая сельскохозяйственных культур. Мн., 1988.
- 9. М и н е н к о В. Ф. Определение годовых суммарных эффективных доз облучения жителей населенных пунктов Республики Беларусь. Мн., 1994.
- 10. Определение годовых суммарных эффективных эквивалентных доз облучения населения для контролируемых районов РСФСР, УССР и БССР, подвергшихся радиоактивному загрязнению в результате аварии на Чернобыльской АЭС: Метод. указания. М., 1991.
- 11. И в а н о в Ю. А. Радиоэкологическое обоснование долгосрочного прогнозирования радиационной обстановки на сельскохозяйственных угодьях в случае крупных ядерных аварий (на примере аварии на Чернобыльской АЭС): Автореф. дис. ... д-ра биол. наук. Обнинск, 1997.
- 12. Санжарова Н.И. Радиоэкологический мониторинг агроэкосистем и ведение сельского хозяйства в зоне воздействия атомных электростанций: Автореф. дис. ... д-ра биол. наук. Обнинск, 1997.

 13. Фесенко С. В., Алексахин Р. М., Санжарова Н.И. и др. // Радиац. биол. Радиоэкол. 1999.
- 13. Фесенко С. В., Алексахин Р. М., Санжарова Н. И. и др. // Радиац. биол. Радиоэкол. 1999. Т. 39, № 5. С. 487—499.
- 14. Алексахин Р. М., Фесенко С. В., Санжарова Н. И. // Радиац. биол. Радиоэкол. 2001. Т. 41, № 3. С. 313—325.
- 15. П о д о л я к А. Г. // Молодые ученые возрождению сельского хозяйства России в XXI веке: Материалы междунар. науч.-практ. конф. Брянск, 2—5 октября 2000 г. Брянск, 2000. С. 171—174.
- 16. П о д о л я к А. Г. Влияние агрохимических и агротехнических приемов улучшения основных типов лугов Белорусского Полесья на поступление 137 Cs и 90 Sr в травостои: Дис. ... канд. с. -х. наук. Гомель, 2002.
- 17. Vidal M., Campas M., Grebenshchikova N., Podolyak A., Rauret G. et al. // Radiation Protection Dosimetry. 2000. Vol. 92, N 1—3. P. 65—70.
- 18. Богдевич И. М., Подоляк А. Г., Арастович Т. В. // Земляроб. i ахова раслін. 2003. № 6. C. 14—16.
- 19. Богдевич И. М., Подоляк А. Г., Арастович Т. В. // Белорус. сельское хозяйство. 2004. № 2. С. 15—16.
- 20. Богдевич И. М., Подоляк А. Г., Арастович Т. В. и др. Рекомендации по улучшению суходольных и низинных лугов, подвергшихся радиоактивному загрязнению. Мн., 2004.

PODOLYAK A. G., ARASTOVICH T. V., ZHDANOVICH V. P.

RADIOLOGICAL ESTIMATION OF AGROCHEMICAL PRACTICES OF IMPROVEMENT OF MEADOWS CONTAMINATED BY $^{137}\mathrm{CS}$ AND $^{90}\mathrm{SR}$ AS A RESULT OF THE ACCIDENT AT CHERNOBYL NPP

Summary

At development of strategy of rehabilitation of basic types of the Belarus Polesye meadows contaminated as a result of the accident at Chernobyl NPP and at substantiation of application of the most effective practices of their improvement (protective counter-measures) it is necessary to use not only parameters of radio-ecological estimation (multiple of ¹³⁷Cs and ⁹⁰Sr concentration reduction in forages after introduction of counter-measures) but also it is necessary to take into account parameters of radiological estimation (value of the prevented collective doze — man. Sv/year) and economic-radiological estimation (cost of decrease of unit of the prevented collective doze — thousand US \$ per 1 man Sv in a year) as a result of application of protective actions. It has been established that application of agrotechnical and agrotechemical protective actions at low-lying (waterlogged) meadows being peatbog soils during remote period after the accident at Chernobyl NPP (2000—2010) is more effective (cost of prevented collective doze < 5000\$/man Sv) in comparison with water-meadows (12000—20000 \$/man Sv) and waterless meadows at mineral soils (about 20000\$/man Sv).