ВЕСЦІ НАЦЫЯНАЛЬНАЙ АКАДЭМІІ НАВУК БЕЛАРУСІ № 3 2005 СЕРЫЯ АГРАРНЫХ НАВУК

УЛК 636.4.082:612.8:577.113

И. П. ШЕЙКО, Т. И. ЕПИШКО, И. Ф. ГРИДЮШКО, Е. С. ГРИДЮШКО

ИСПОЛЬЗОВАНИЕ ДНК-ТЕХНОЛОГИЙ ПРИ ОПРЕДЕЛЕНИИ СТРЕССОВОЙ ЧУВСТВИТЕЛЬНОСТИ И ПРОДУКТИВНОСТИ СВИНЕЙ

Институт животноводства НАН Беларуси

(Поступила в редакцию 20.06.2005)

Введение. В отечественном свиноводстве приобретает массовый характер использование достижений новых биотехнологических приемов селекции для повышения мясной продуктивности гибридного молодняка.

Однако бессистемное, необоснованное внедрение в племенное и товарное производство мясных генотипов часто приводит вместо желаемого улучшения к негативным последствиям. К наиболее распространенным из них относятся ослабление естественной резистентности и стрессовый синдром, следствием которых является увеличение отхода поросят и резкое снижение откормочной, мясной продуктивности и ухудшение качества свинины [1].

Отмечено, что селекция на повышение мясности без оценки и отбора животных по устойчивости к стрессам приводит к значительному увеличению стрессчувствительности свиней в стаде уже через 2 поколения. В то же время тестирование и браковка из стада стрессчувствительных животных позволяет за 2—3 поколения снизить уровень стрессового синдрома с 36 до 8%, что, в свою очередь, снижает проявление пороков мяса PSE и DFD с 32 до 8% [2].

Совершенствование отечественных пород традиционными методами селекции не обеспечивает в полном объеме товарное свиноводство высокопродуктивными животными. В то же время широкое использование в селекционном процессе животных специализированных мясных пород ландрас и пьетрен ограничено их стрессчувствительностью, на что указывает высокая частота аллеля n и гетерозиготного генотипа Nn. Создание новых генотипов, объединяющих в себе мясные и откормочные качества специализированных пород зарубежной селекции и устойчивость к технологическим стрессам отечественных пород, является актуальной задачей селекционеров республики. Один из путей решения этой задачи — использование адаптированных к условиям промышленного свиноводства гибридных хряков, полученных от скрещивания стрессустойчивых свиноматок крупной белой и белорусской чернопестрой пород с хряками мясных пород ландрас и пьетрен.

Цель работы — изучить генетическую структуру создаваемых популяций по локусу гена RYR1, ассоциированного со злокачественной гипертермией, следствием которой является повышенная чувствительность к стрессу, а также влияние его полиморфизма на проявление продуктивных качеств у подопытных животных.

Материалы и методы исследования. В Институте животноводства НАН Беларуси в 2003—2004 гг. проведено ДНК-тестирование чистопородных хряков — производителей пород: крупной белой, белорусской черно-пестрой и помесных (1/2БЧ1/2Л, 1/2КБ1/2Л, 1/2БЧ1/2П), свиноматок генотипа 1/2БЧ1/2П и откормочного молодняка генотипов БЧ, 3/4БЧ1/4Л, 3/4КБ1/4Л, 3/4БЧ1/4П, разводимых в РСПУП СГЦ «Заречье» Гомельской области.

Ядерную ДНК выделяли из ткани уха свиней фенольно-перхлоратным методом. Амплификацию фрагмента RYR1 гена проводили методом ПЦР с использованием олигонуклеотидных праймеров.

Для выполнения поставленной цели был проведен контрольный откорм и убой молодня-ка генотипов БЧ, 3/4БЧ1/4Л, 3/4БЧ1/4Л, 3/4БЧ1/4Л.

При проведении контрольного откорма учитывались: возраст достижения живой массы 100 кг (дней), среднесуточный прирост (г) и затраты корма на 1 кг прироста (к. ед.); для характеристики мясной продуктивности: длина туши (см), толщина шпика (см), масса задней трети полутуши (кг), площадь «мышечного глазка» (см²).

Результаты и их обсуждение. Полученные результаты исследований ДНК по локусу гена RYR1 у хряков — производителей различных генотипов, позволили выявить значительные различия частот встречаемости мутантного аллеля гена RYR^n (табл. 1).

У чистопородных хряков крупной белой и белорусской черно-пестрой пород данный по-казатель составил 0,030 и 0,083 соответственно. Помесные хряки с кровностью 50% мясных пород ландрас и пьетрен отличались относительно высокой частотой аллеля n-0,167, что в 2 раза выше, чем у хряков белорусской черно-пестрой породы и 5,6 раз, чем у хряков крупной белой породы. Исключение составляют гибридные хряки генотипа 1/2БЧ1/2Л, у которых отсутствует аллель RYR^n , что, вероятно, объясняется малой выборкой и не позволяет сделать обобщающие выводы по данному генотипу хряков.

Порода и породные сочетания*	Половозрастная группа	Частота встречаемо	Частота аллелей		
		NN	Nn	N	n
БЧ	хряки-производители	83,0	17,0	0,917	0,083
КБ	-//-	94,7	5,3	0,970	0,030
1/2БЧ1/2Л	-//-	100	_	1,000	_
1/2БЧ1/2П	-//-	66,7	33,3	0,833	0,167
1/2КБ1/2Л	-//-	66,7	33,3	0,833	0,167
1/2БЧ1/2П	свиноматки	59,0	41,0	0,794	0,206
БЧ	откормочный молодняк	60,0	40,0	0,800	0,200
3/4БЧ1/4Л	-//-	86,4	13,6	0,932	0,068
3/4БЧ1/4П	-//-	18,0	82,0	0,588	0,412
3/4КБ1/4Л	-//-	83.3	16.7	0.917	0.083

Т а б л и ц а 1. Генетическая структура чистопородных и помесных хряков-производителей, свиноматок и откормочного молодняка по гену RYR1

Среди чистопородных и помесных хряков-производителей, используемых на селекционно-гибридном центре «Заречье», животных с генотипом nn, чувствительных к стрессу, выявлено не было. Из протестированных чистопородных хряков белорусской черно-пестрой и крупной белой пород 83 и 94,7% животных соответственно были гомозиготными (NN) по гену RYR1 и свободны от стресса. Увеличение частоты встречаемости гетерозиготного генотипа Nn-носителей злокачественной гипертермии у двухпородных хряков до 33,3% вызвано прилитием крови мясных пород ландрас и пьетрен, которым характерно наличие мутантного аллеля (ландрас — 3-85%, пьетрен — 31-100%) [3].

На втором этапе исследований изучалась возможность использования полукровных хряков в скрещиваниях с чистопородными свиноматками крупной белой и белорусской чернопестрой пород для получения высокопродуктивного, стрессустойчивого молодняка. Помесные потомки с кровностью 25% породы ландрас отличались от чистопородных (БЧ) и двухпородных сверстников генотипа 3/4БЧ1/4П более низкой частотой аллеля n-0.06-0.083. Высокий уровень данного показателя у чистопородного молодняка объясняется тем, что в выборку попали животные, которые в своей родословной имели предков с кровностью породы ландрас финской селекции, прилитие которой было в 1989-1991 гг. Подтверждают это результаты тестирования свиноматок генотипа 1/2БЧ1/2П, у которых частота аллеля n оказалась выше на 2.3% по сравнению с хряками такого же генотипа.

Влияние RYR1-генотипа на признаки туши составляет от 3,5 до 27%, на критерии качества мяса — до 60%, на прирост живой массы — до 10% [3]. В нашем исследовании помесный молодняк белорусской черно-пестрой породы с кровностью 25% породы ландрас свободный от точковой мутации злокачественной гипертермии превосходил животных генотипа Nn по откормочной продуктивности на 8,4—5,1% ($P \le 0,01$) при высоких мясных кондициях (табл. 2).

Использование полукровных хряков белорусской черно-пестрой породы и пьетрен при скрещивании с чистопородными матками белорусской черно-пестрой породы позволяет получить потомков свободных от стресса, отличающихся высоким среднесуточным приростом — 761 г и низким расходом корма на 1 кг прироста — 3,36 к. ед., лучшими мясными качествами, по сравнению с животными с гетерозиготным генотипом Nn. Так, по энергии роста и потреблению корма на единицу прироста превосходство составило 7% ($P \le 0.05$) и 5.9% ($P \le 0.01$) соответственно, а по мясным показателям — 0.3—7.1% (P > 0.05).

^{*} БЧ — белорусская черно-пестрая, КБ — крупная белая, Л — ландрас, П — пьетрен.

Т а б л и ц а 2. Влияние полиморфизма гена RYR1 на показатели откормочной и мясной продуктивности чистопородного и помесного молодняка белорусской черно-пестрой и крупной белой пород

Порода и породные сочетания	Генотип по RYR1	Среднесуточный прирост, г	Затраты корма на 1 кг прироста, к. ед.	Длина туши, см	Толщина шпика, мм	Масса окорока, кг	Площадь «мышечного глазка», см
БЧ	NN	702±11,64	3,61±0,06	96,2±0,27	28,2±1,05	10,50±0,22	31,6±0,51
	Nn	707±9,77	3,60±0,03	95,9±0,21	28,4±0,88	10,60±0,16	33,0±0,78
3/4БЧ1/4Л	NN	733±1,60***	3,53±0,05**	98,7±0,57	27,4±0,50	11,10±0,14	36,4±1,03
	Nn	676±0,71	3,72±0,01	98,1±0,10	27,4±1,10	11,05±0,15	33,7±1,58
3/4БЧ1/4П	NN	761±13,91*	3,36±0,02**	98,3±0,33	25,3±1,17	11,00±0,38	39,3±2,78
	Nn	710±12,82	3,57±0,05	98,0±0,25	26,6±0,88	11,00±0,13	36,7±1,43
3/4КБ1/4Л	NN	722±8,97	3,51±0,05	96,9±0,49	27,5±0,45	10,60±0,09	33,9±0,63
	Nn	699±26,00	3,61±0,11	96,8±0,40	26,2±1,60	10,50±0,17	34,2±0,89

П р и м е ч а н и е. Достоверность разницы дана относительно генотипа Nn: $^*P \le 0.05$; $^{**}P \le 0.01$; $^{***}P \le 0.01$.

Двухпородный откормочный молодняк, полученный от скрещивания гибридных хряков генотипа 1/2КБ1/2Л и свиноматок крупной белой породы, свободный от мутаций гена RYR1, характеризовался хорошими откормочными качествами, но уступал в мясности помесям с Nn генотипом. В данном случае помесный молодняк крупной белой породы с кровностью 25% породы ландрас в гетерозиготной форме по гену RYR1 превосходил гомозиготных особей (NN) по толщине шпика над 6-7-м грудными позвонками на 5% и площади «мышечного глазка» на 0.9%, однако эти различия не достоверны.

Заключение. Установлено, что воздействие технологических стрессов на помесный молодняк с участием пород пьетрен и ландрас приводит к снижению откормочной продуктивности на 8,4—2,8%, а мясной — на 0,3—8,0% у носителей точковой мутации злокачественной гипертермии.

Выявлено, что при межпородной гибридизации в условиях промышленных комплексов предпочтительно получать для заключительного откорма помеси белорусской черно-пестрой породы с кровностью 25% пород ландрас или пьетрен устойчивые к стрессу, отличающиеся высокими откормочными и мясными качествами.

Проведение ДНК-тестирования животных, используемых в племенных целях, а также импортируемых, позволяет выявить, а следовательно, нивелировать из популяции носителей злокачественной гипертермии за одно поколение, значительно ускорить процесс селекции и получить высокопродуктивный гибридный молодняк.

Литература

- 1. Б у р г у Ю. // Свиноводство. 2005. № 1. С. 8—9.
- 2. Никитченко И. Н. Гетерозис в свиноводстве. Л., 1987. С. 138—149.
- 3. Шейко И. П., Епишко Т. И., Подскребнин Н. В. и др. // Зоотехническая наука Беларуси: Сб. науч. тр. Т. 39. Гродно, 2004. С. 166—170.

SHEYKO I. P., YEPISHKO T. I., GRIDIUSHKO I. F., GRIDIUSHKO E. S.

USE OF DNA-TECHNOLOGIES IN STRESS SENSIBLE DETERMINATION AND PRODUCTIVITY OF PIGS

Summary

Carried out researches and DNA-testing of purebred and crossbred Belarussian black-and-white and large white pigs had shown the connection between polymorphysm of RYR 1 gene and fattening and meat productivity. It has been marked a decrease of meat productivity indexes of black-and-white and large white crosses having blood relationship of 25% of Landrase and Pietrain breed being heterozygous on RYR 1 gene at 8,4—2,8% and 0,3—8,0% respectively.