ВЕСЦІ НАЦЫЯНАЛЬНАЙ АКАДЭМІІ НАВУК БЕЛАРУСІ № 3 2006 СЕРЫЯ АГРАРНЫХ НАВУК

УДК 636.22/.28.03+616.15:636.085.12

Т. Г. КОЗИНЕЦ, И. И. ГОРЯЧЕВ

ПРОДУКТИВНОСТЬ И ГЕМАТОЛОГИЧЕСКИЕ ПОКАЗАТЕЛИ РЕМОНТНЫХ БЫЧКОВ В ЗАВИСИМОСТИ ОТ УРОВНЯ ОБЕСПЕЧЕННОСТИ МОЛИБДЕНОМ

Институт животноводства НАН Беларуси

(Поступила в редакцию 09.07.2005)

Одним из основных условий интенсивного ведения животноводства на промышленной основе является высокая продуктивность животных. Для проявления генетически обусловленной потенциальной способности организма синтезировать качественную продукцию необходимо создать условия кормления и содержания, обеспечивающие наиболее оптимальное течение процессов обмена веществ в организме животных [1].

Важным микроэлементом минерального питания животных является молибден, так как он необходим для жизнедеятельности растений и животных [2, 3]. Молибден входит в состав флавиновых ферментов ксантиноксидазы и альдегидоксидазы, в оптимальных дозах он оказывает влияние на обменные процессы в организме, повышая активность одних и угнетая действие других ферментов, положительно влияет на функции органов размножения, стимулирует фагоцитарную активность лейкоцитов. Его избыток в рационах вызывает заболевание животных молибденовым токсикозом, а недостаток приводит к нарушению обмена веществ и снижению продуктивности [4—6].

По данным Б. Д. Кальницкого (1985), А. П. Калашникова, Н. И. Клейменова (1985), А. П. Дмитроченко (1962), потребность крупного рогатого скота в молибдене находится в пределах 0,5—1,5 мг/кг сухого вещества рациона [7—9].

Из-за недостаточной изученности влияния молибдена на организм племенных бычков нормы его скармливания носят ориентировочный характер и при балансировании рационов практически не учитываются.

Цель исследований – разработать и экспериментально обосновать норму потребности в молибдене племенных бычков до 6-месячного возраста.

Объекты и методы исследования. Научно-хозяйственные опыты были проведены на ремонтных бычках черно-пестрой породы до 6-месячного возраста в РСУП «Племзавод «Кореличи» Гродненской области Кореличского района в летний и зимний периоды 2004—2005 гг. Для этого были отобраны 3 группы животных по 10 голов в каждой с учетом породности, происхождения, живой массы. Животные всех групп находились в одинаковых условиях кормления и содержания.

Минеральные элементы в состав премикса вводили в соответствии с нормами потребности животных (ВАСХНИЛ, 1985). Различия в кормлении заключались в том, что для молодняка I контрольной группы с учетом содержания молибдена в кормах в состав премикса был включен этот микроэлемент для восполнения дефицита в рационе в дозе до 0,5 мг/кг сухого вещества, бычкам II и III опытных групп – в количестве 1,0 и 1,5 мг/кг сухого вещества соответственно.

В качестве концентратов использовался комбикорм с включением премиксов для каждой группы животных. Кроме комбикорма в состав рациона бычков входили молоко, заменитель цельного молока, зеленая масса, овес, кукуруза, сено, сенаж, жмых подсолнечный.

Кормление телят в течение опыта было групповым, но молочные корма (молоко цельное и заменитель цельного молока) выпаивали индивидуально. Динамику живой массы и среднесуточных приростов определяли путем индивидуального ежемесячного взвешивания подопытных бычков. Научно-хозяйственные опыты проводили по схеме, приведенной в табл. 1.

Таблипа 1. Схема опытов

Группа	Кол-во животных, гол.	Живая масса, кг	Продолжительность опыта, дни	Условия кормления	Доза молибдена, мг/кг СВ			
Опыт I (летний)								
I	10	31,7	182	ОР+ВМД№ 1	0,5			
II	10	31,0	182	ОР+ВМД№ 2	1,0			
III	10	31,5	182	ОР+ВМД№ 3	1,5			
Опыт II (зимний)								
I	10	31,6	181	ОР+ВМД№ 1	0,5			
II	10	31,3	181	ОР+ВМД№ 2	1,0			
III	10	32,0	181	ОР+ВМД№ 3	1,5			

Для контроля за физиологическим состоянием животных в научно-хозяйственных опытах проводили анализ биохимического состава крови, которую брали спустя 2 ч после утреннего кормления из яремной вены.

Результаты и их обсуждение. Важными показателями при изучении эффективности скармливания сельскохозяйственным животным определенных кормов и добавок являются их влияние на живую массу и среднесуточные приросты.

Использование премиксов с включением различных уровней молибдена в рационах телят не оказало отрицательного влияния на скорость роста подопытных животных. За период выращивания у бычков I группы отмечены более низкие среднесуточные приросты живой массы по сравнению с молодняком других групп (табл. 2). Анализируя полученные данные, можно отметить, что самый высокий прирост получен у бычков, в рацион которых входил опытный премикс, содержащий молибден в дозе 1,0 мг/кг сухого вещества (СВ). Среднесуточный прирост в первом опыте во II группе составил 970,9 г (P < 0,01), что выше на 3,3% по сравнению с III опытной группой и на 5,1% больше, чем в I контрольной группе. Скармливание молибдена в количестве 0,5 и 1,5 мг в расчете на 1 кг СВ оказало меньшее влияние на энергию роста животных.

Таблица2. Динамика живой массы и среднесуточных приростов

Показатель	Опыт I (летний)			Опыт II (зимний)			
Показатель	I	II	III	I	II	III	
Живая масса, кг:							
в начале опыта	31,7	31,0	31,5	31,6	31,3	32,0	
в конце опыта	199,9	207,7	202,5	197,4	206,1	200,7	
Прирост:							
валовой, кг	168,2	176,7	171,0	165,8	174,8	168,7	
среднесуточный, г	924,2	970,9**	939,6*	916,0	966,0**	932,0	
в % к контролю	100	105,1	101,7	100	105,5	101,7	

 $^{^*}P < 0.05, ^{**}P < 0.01.$

Во втором научно-хозяйственном опыте использование молибдена в дозе 1,0 мг/кг СВ повысило среднесуточные приросты бычков на 5,5% по сравнению с I контрольной группой, что еще раз подтверждает преимущество этой дозировки. Кроме того, у бычков II опытной группы среднесуточные приросты были выше на 3,6% по сравнению с аналогами III группы.

Исследования показателей крови широко применяют для характеристики физиологического состояния животных, оценки полноценности питания и продуктивных качеств животных. Кровь поддерживает самую тесную и постоянную связь между различными частями организма и является своеобразной внутренней средой, в которой определенным образом находит отражение динамика жизненных процессов, протекающих в организме, и восприимчивость его к колебаниям

Таблица3. Биохимический состав крови подопытных животных в конце опыта

Показатель	Опыт I (летний)			Опыт II (зимний)				
показатель	I	II	III	I	II	III		
Гемоглобин, г%	10,3±0,09	11,0±0,08*	10,5±0,26	10,0±0,06	10,9±0,16*	10,1±0,13		
Эритроциты, $10^{12}/\pi$	7,2±0,03	7,7±0,17	$7,4\pm0,04$	7,2±0,01	7,6±0,08*	$7,4\pm0,06$		
Резервная щелоч-								
ность, мМоль/л	487±6,67	513±6,64	497±6,67	473±6,67	487±6,67	480±11,6		
Витамин А,								
мкМоль/л	1,62±0,01	1,68±0,01*	1,65±0,01	1,32±0,02	1,42±0,02*	1,35±0,01		
Каротин, мМоль/л	0,038±0,001	0,042±0,001*	0,040±0,001	0,024±0,001	0,029±0,001	0,028±0,004		
Кальций, мМоль/л	2,7±0,02	2,9±0,06*	2,8±0,02	2,7±0,03	2,9±0,03*	2,8±0,02*		
Фосфор, мМоль/л	1,96±0,01	2,03±0,01*	1,98±0,02	1,93±0,01	2,10±0,03*	2,02±0,02*		

 $^{^*}P < 0.05.$

Таблица4. Экономическая эффективность выращивания ремонтных бычков (цены на 01.01.2004 г.)

Показатель		Опыт I (летний)			Опыт II (зимний)		
		II	III	I	II	III	
Затраты кормов на 1 кг прироста, к. ед.	4,32	4,19	4,26	4,37	4,21	4,31	
Расход кормов на 1 голову за опыт, к. ед.	726	741	730	724	737	726	
Получено прироста на голову за период опыта, кг	168,2	176,7	171,0	165,8	174,8	168,7	
Дополнительный прирост на 1 голову за год, кг	_	17	6	_	18,1	5,8	
Стоимость потребленных кормов за период опыта, тыс. руб.	402,0	402,7	402,2	397,6	398,3	397,8	
Всего затрат, тыс. руб.	574,2	575,4	574,5	568,0	569,0	568,3	
Себестоимость 1 кг прироста, руб.	3414	3256	3360	3426	3255	3369	
Стоимость 1 кг прироста племенного молодняка по закупочным ценам, руб.	5484	5484	5484	5484	5484	5484	
Стоимость валовой продукции 1 головы по реализационной цене за опыт, тыс. руб.	922,4	969,0	937,7	909,2	958,6	925,2	
Чистый доход на 1 голову за опыт, тыс. руб.	348,2	393,6	363,2	341,2	389,6	356,9	
Экономическая эффективность на 1 голову за опыт, тыс. руб.	_	45,4	15,0	_	48,4	15,7	
Экономическая эффективность на 1 ц прироста, тыс. руб.	207	223	212	205,8	222,9	211,6	

внешней среды. Для получения более полной и точной информации о процессах, происходящих в организме животных, были проведены исследования биохимического состава крови (табл. 3), в результате которых установлено, что все биохимические показатели крови находились в пределах физиологической нормы. В первом научно-хозяйственном опыте у бычков II опытной группы отмечено достоверное увеличение гемоглобина, витамина А, каротина, кальция, фосфора. У животных II опытной группы отмечалось увеличение содержания гемоглобина и эритроцитов на 6,8 (P < 0.05) и 6,9%, резервной щелочности, витамина A, каротина, кальция – на 5,3; 3,7; 10,5; 7,4% соответственно, а фосфора – на 3.6% (P < 0.05) по сравнению с контрольной группой. В III опытной группе биохимические показатели крови были несколько ниже, чем во II, но все же превосходили показатели контрольных по эритроцитам на 2,8%, резервной щелочности, каротину, кальцию – на 2,1; 5,3; 3,7% соответственно. Во втором научно-хозяйственном опыте в зимний период животные II группы превосходили аналогов I группы по гемоглобину и эритроцитам на 9,0 (P < 0.05) и на 5,6%, витамину A и кальцию – 7,6 и 7,4 (P < 0.05), фосфору – 8,8 (P < 0.05), резервной щелочности – на 3,0%. У бычков III опытной группы показатели крови были выше по содержанию эритроцитов на 2,8%, кальция – 3,7 (P < 0,05), фосфора – на 4,7% (P < 0,05) по сравнению с бычками І контрольной группы.

На основании фактических данных показателей прироста живой массы были произведены расчеты экономической эффективности использования различных доз молибдена в составе комбикорма при кормлении бычков до 6-месячного возраста (табл. 4.).

Согласно полученным данным I опыта, введение в основной рацион животных II и III групп молибдена способствовало снижению затрат кормов на производство единицы продукции по сравнению с таковыми в контрольной группе. Так, в возрасте 6 месяцев у животных II группы затраты на 1 кг прироста живой массы составили 4,19 к. ед., что на 3,1% ниже, чем у аналогов I группы. Бычки III группы по затратам корма на единицу продукции занимали промежуточное положение между животными I и II групп. Молодняк II и III групп превосходил также своих сверстников из контрольной по количеству полученного прироста живой массы за период опыта на 8,5 кг (5,1%) и 2,8 кг (1,7%) соответственно. Стоимость валовой продукции одной головы контрольной группы за период опыта составила 922,4 тыс. руб., что на 5,1% меньше, чем во II опытной группе, и на 1,7% по сравнению с III опытной. Себестоимость 1 кг прироста во II группе была на 4,9% ниже, чем в контрольной группе. Чистый доход на 1 голову за опыт во II опытной группе составил 393,6 тыс. руб., или на 13,0% выше по сравнению с контрольной группой.

Во II опыте за период выращивания животные I группы затрачивали на 1 кг прироста живой массы 4,37 к. ед. По сравнению с животными контрольной группы молодняк II и III групп затрачивал на 1 кг прироста живой массы 4,21 и 4,31 к. ед. соответственно, или на 3,8 и 1,3% меньше. Бычки II и III групп превосходили также животных из контрольной группы по количеству полученного прироста живой массы за период опыта на 9,0 кг (5,4%) и 2,9 кг (1,7%) соответственно. Стоимость валовой продукции одной головы за опыт в контрольной группе составила 909,2 тыс. руб., что на 5,4% меньше, чем во II опытной группе, и на 1,8% меньше по сравнению с III опытной. Себестоимость 1 кг прироста во II группе была на 5,3% ниже, чем в контрольной группе. Чистый доход на 1 голову за опыт во II опытной группе составил 389,6 тыс. руб., или на 14,2% выше по сравнению с контрольной группой.

Выводы

- 1. Из трех изучаемых доз молибдена (0.5; 1.0; 1.5 мг/кг сухого вещества) наиболее эффективной является доза 1.0 мг на 1 кг сухого вещества.
- 2. Включение в рацион молодняка крупного рогатого скота до 6-месячного возраста молибдена в оптимальной дозе оказало положительное влияние на потребление кормов, обмен веществ и продуктивность. Среднесуточный прирост в первом опыте во II группе составил 970,9 г (P < 0,01), что выше на 3,3% по сравнению с III опытной группой, и на 5,1% по сравнению с контрольной группой. Во втором научно-хозяйственном опыте среднесуточные приросты бычков во II группе были выше на 5,5% по сравнению с I группой и на 3,6% по сравнению с животными III опытной группы.
- 3. Использование вышеуказанных доз микроэлементов оказывает положительное влияние на биохимические показатели крови подопытных бычков. У молодняка II группы содержание в крови гемоглобина, витамина A, кальция и фосфора в двух опытах было статистически достоверным (P < 0.05) по сравнению с животными I группы.
- 4. Включение в рацион молодняка крупного рогатого скота молибдена в оптимальной дозе способствовало снижению затрат кормов на единицу получаемой продукции на 3,1–3,8%.

Литература

- 1. С а м о х и н В. Т. Профилактика нарушений обмена микроэлементов у животных. М., 1981. С. 144.
- 2. Никитин А. М., Коновалов В. А., Гвоздиковска А. Т. Словарь-справочник по кормопроизводству и кормлению сельскохозяйственных животных / Под ред. А. М. Жадана. Киев, 1990.
- 3. Х е н н и г А. Минеральные вещества, витамины, биостимуляторы в кормлении сельскохозяйственных животных. М., 1976. С. 560.
- 4. Гай и рбегов Д. Ш., Дугушкин Н. В. Нормирование молибдена в рационах жвачных животных // Физиологические и биологические основы высокой продуктивности животных. Саранск, 1997. С. 64–66.
 - 5. Л е б е д е в Н. И. Использование микродобавок для повышения продуктивности жвачных животных. Л., С. 96.

- 6. A n k e M. Die Bedeutung der spurenelemente für die tierischen Leistungen. Tagungsbe // Akad. Landwirtschaftswiss DDR. 1974. N. 132. P. 25–40.
 - 7. Кальницкий Б. Д. Минеральные вещества в кормлении животных. Л., 1985. С. 207.
- 8. Нормы и рационы кормления сельскохозяйственных животных: Справ. пособие / А. П. Калашников, Н. И. Клейменов, В. Н. Баканов и др. М., 1986. С. 352.
- 9. Д м и т р о ч е н к о А. П. Потребность сельскохозяйственных животных в микроэлементах и ее определение // Микроэлементы в животноводстве / Под ред. В. В. Ковальского. М., 1962. С. 23–36.

T. G. KOZINETS, I. I. HARACHEU

PRODUCTIVITY AND HAEMOTOGIC INDICES OF REPLACEMENT STEERS DEPENDING ON DIFFERENT LEVEL OF DIETARY MOLYBDENUM

Summary

The results of our investigation have shown that young cattle premixes supplemented with 1.0 mg/kg DM of Mb increased daily gain, developement and biochemical performances of breeding steers. During summer and winter experiments, the daily gain of group II was 970.9 g and 975.1 g, which was 3.3–5.1%; 3.6–5.5% higher than that of other groups. Feeding steers of group II with premixes supplemented with molybdenum had a positive effect on the blood morphologic composition and increased the haemoglobin level, red cells, reserving alkalinity, carotin, vitamin A, Ca, P by 3.0–20.8%; lowered feed expenses by 3.1–3.8% / FV, when compared to controls.