МЕХАНІЗАЦЫЯ І ЭНЕРГЕТЫКА

УДК 636.087.61.002.38

 $B. \ B. \ A3APEHKO^{l}, \ И. \ И. \ ГОРЯЧЕВ^{2}, \ В. \ И. \ ПЕРЕДНЯ^{l}$

ТЕХНОЛОГИЯ ПРИГОТОВЛЕНИЯ ЗАМЕНИТЕЛЯ ЦЕЛЬНОГО МОЛОКА НА ОСНОВЕ ЗЕРНОВЫХ КОМПОНЕНТОВ

¹Научно-практический центр НАН Беларуси по механизации сельского хозяйства, ²Научно-практический центр НАН Беларуси по животноводству

(Поступила в редакцию 18.04.2008)

Опыт молочного животноводства во всем мире показывает, что ни одно успешное хозяйство не обходится без заменителей цельного молока (ЗЦМ) для выпаивания телят. Применение ЗЦМ помогает решить главные задачи — выращивание здорового, высокопродуктивного стада и получение стабильной, высокой прибыли от продажи молока. В настоящее время, при дефиците молока, на выпойку одного теленка расходуют 250–400 кг цельного молока, а с учетом вторичных молочных продуктов (обрата, сыворотки и т. д.) в переводе на сухое вещество животным скармливают около 16% валового производства молочных продуктов. Для сравнения: в развитых странах с учетом вторичных молочных продуктов телятам скармливают не более 6–8% валового производства молока.

С целью экономии цельного молока в республике также начинают выпускать ЗЦМ. Основой таких продуктов является сухое обезжиренное молоко и гидромонизированный жир с добавками витаминов, что ведет к увеличению их стоимости и затратам ценного молочного белка. Сократить расход цельного молока и вторичного молочного сырья можно за счет производства ЗЦМ на основе растительного сырья (гороха, люпина, сои, рапса, льносемени, овса и т. д.) и минеральных обогатительных добавок [1, 2].

Научно-практический центр НАН Беларуси по механизации сельского хозяйства совместно с Научно-практическим центром НАН Беларуси по животноводству в 2005—2007 гг. разработали технологию и комплект оборудования ОПЗМ-0,9 для производства ЗЦМ из имеющихся в хозяйстве зерновых компонентов.

В основу технологии приготовления ЗЦМ положена идея влаготепловой обработки зерна или зерновых продуктов на специальной гидродинамической установке, которая позволяет прямо из

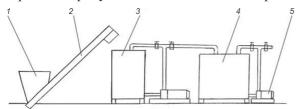


Рис. 1. Технологическая схема приготовления ЗЦМ: I — весоизмерительное устройство приема зернофуража, 2 — транспортер подачи зернофуража, 3 — агрегат влаготепловой обработки, 4 — смеситель приготовления ЗЦМ, 5 — насос подачи приготовленного ЗЦМ

зернофуража получать однородную гомогенную мелкодисперсную массу, что очень важно при приготовлении ЗЦМ [3, 4] (рис. 1).

Поскольку данных по исследованию приготовления заменителей цельного молока на основе широкого использования зернофуража в литературе имеется недостаточно, то исследования были проведены в два этапа.

В первой серии опытов были проведены поисковые исследования с целью определения возможности получения гомогенной смеси из

Таблица 1. Характеристика полученной массы после влаготепловой обработки зернофуража

Нимализич	Температура нагрева		
Ингредиенты	70 °C	80 °C	90 °C
Ячмень шелушенный	++	+++	+++
Люпин	+	++	+++
Рапс	+	+	++
Люпин, предварительно замоченный в течение 7 ч	++	+++	+++
Зерносмесь (ячмень, люпин, рапс), предварительно			
замоченная в течение 7 ч	++	+++	+++

Примечания: (+) – неудовлетворительная (неоднородная хлопьевидная масса, имеются фрагменты зерна до 1 мм, при хранении более 30 мин смесь диспергирует); (++) – удовлетворительная (практически однородная смесь с незначительным количеством комочков, рассыпающихся при надавливании); (+++) – хорошая (однородная масса, напоминающая жидкую сметану).

отдельных видов зернофуража и смеси зернофуража при различных режимах обработки (табл. 1).

Исследования показали, что нагрев зерносмеси до 80 °C вполне достаточный, поскольку качество приготовленной смеси соответствует зоотехническим требованиям [1, 2].

После проведения поисковых опытов была проведена вторая серия опытов. Предварительно увлажненный зернофураж загружался в агрегат тепловой обработки, где измельчался и нагревался. При достижении температуры 90 °C агрегат влаготепловой обработки останавливался и производилась выдержка зерносмеси при данной температуре в течение 10–20 мин.

В результате влаготепловой обработки смеси зернофураж с помощью установки влаготепловой обработки превращался в пасту, содержащую 25–28% сухого вещества.

Как видно из табл. 2, содержание питательных веществ в зерносмеси и после обработки в агрегате влаготепловой обработки в основном осталось почти неизменным, за исключением сахара и клетчатки [5]. Вероятно, в результате воздействия температуры, влаги и времени на клетчатку и белки зерна произошел распад части белка на более простые составляющие.

Таблица 2. Содержание питательных веществ в сухом веществе зернофуража, г/кг

Показатель	Macca			
	Зерносмесь до обработки	Паста	%	
Органическое вещество	969	968,6	99,9	
Азот	43,6	42,2	96,7	
Протеин	272	266	97,7	
Caxap	49,2	75,1	152,6	
Клетчатка	121,7	58,8	48,3	
Жир	131,6	131,7	100	
БЭВ	350,9	363,4	103,5	
Зола	31,0	31,4	101,3	

Поскольку процесс приготовления ЗЦМ достаточно энергоемок по известным в литературе технологиям [6, 7], то было предложено измельчать зерно не в холодной воде, а в предварительно нагретой до 40–50 °C, а в агрегате только доизмельчать зерно до пасты, что подтверждается расчетами. Если пренебречь затратами на холостой ход, то затраты энергии на измельчение и нагрев получаемой массы составят

$$N = N_{\rm H3M} + N_{\rm II} + N_{\rm B},\tag{1}$$

где $N_{\rm изм}$ — затраты энергии на измельчение материала; $N_{\rm ц}$ — затраты энергии, расходуемой на создание циркуляции материала в камере измельчения; $N_{\rm B}$ — затраты энергии на нагрев воды другим источником.

Затраты энергии на измельчение материала можно определить по уравнению

$$N_{\text{M3M}} = qA_{\text{M3M}},\tag{2}$$

где q — производительность дробилки, кг/с; $A_{\rm изм}$ — удельная работа на измельчение, Дж/кг. Работу, затрачиваемую на измельчение, можно определить следующим образом:

$$A_{\text{H3M}} = C_{\text{np}} [C_{\nu} \lg \lambda^3 + C_{s}(\lambda - 1)], \tag{3}$$

где $C_{\rm np}$ — коэффициент, учитывающий влажность зерна; $C_{\rm v}$ — коэффициент, который определяет работу упругих деформаций при принятом методе механических воздействий на материал, отнесенную к единице его массы; $C_{\rm s}$ — коэффициент, определяющий работу, затрачиваемую на образование новых поверхностей при измельчении и отнесенный к единице массы корма; λ — степень измельчения.

Затраты энергии, расходуемой на создание циркуляции материала в камере измельчения, определяются по формуле

$$N_{\rm II} = K_{\rm B} (1 + K_{\rm II} \mu_{\rm II}) \vartheta_{\rm M}, \tag{4}$$

где $K_{\rm B}$ — коэффициент, учитывающий конструкцию и режим работы молотковой дробилки в режиме вентилятора (обычно принимается $K_{\rm B}=0.05$); $K_{\rm L}$ — кратность циркуляции материала в рабочей камере; $\mu_{\rm L}$ — массовая доля зерна в слое материала; $\theta_{\rm M}$ — окружная скорость по концам молотков, м/с.

Затраты энергии на нагрев воды посторонним специализированным источником можно получить исходя из формулы

$$N_{\rm B} = \frac{Q}{t},\tag{5}$$

где t – время нагрева воды, с, Q – затраты энергии на нагрев воды, Дж, определяемые по формуле Q = C m T , где C – теплоемкость воды, равная 4180 Дж/кг; m – масса нагреваемой воды, кг; T – температура нагрева воды.

Чтобы уменьшить тепловые потери в окружающую среду, была определена емкость влаготепловой обработки зерна:

$$V = \frac{\sum (n_i g_i)}{2.5K_1 K_2},\tag{6}$$

где n_i – количество телят, выпивающих i-ю норму ЗЦМ; g_i – норма выдачи ЗЦМ i-м животным; K_1 – кратность кормления животных в сутки; K_2 – коэффициент, учитывающий вместимость смесителя приготовления ЗЦМ животным.

С другой стороны, исходя из технологических потерь, боковая поверхность агрегата влаготепловой обработки кормов должна иметь минимальную поверхность при заданном объеме об-

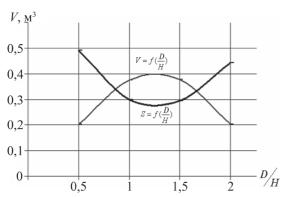


Рис. 2. Зависимость поверхности S и объема V цилиндра от отношения D/H

работки смеси воды и зернофуража. Для цилиндрического агрегата этому соответствует отношение диаметра (D) цилиндра к высоте (H) в пропорции $D/H = 0.8, \ldots, 1.3$ (рис. 2).

Учитывая представленное соотношение поверхности цилиндра (S) с его объемом (V), можно определить вместимость агрегата влаготепловой обработки по формуле

$$V = \frac{\pi D^3}{4(0,8...1,3)} \,. \tag{7}$$

Приравняв вместимость агрегата, полученную исходя из количества обслуживаемого поголовья,

с вместимостью агрегата, рассчитанную исходя из минимальных потерь тепла, можно определить диаметр или высоту агрегата влаготепловой обработки.

Как показали испытания, в производственных условиях для нагрева воды в количестве 190 л от 12 °C до 90 °C с одновременным измельчением 90 кг зерна в установке ТЕК-3СМ (Украина) потребовалось затратить 45 кВт·ч, или 0,5 кВт·ч на 1 кг полученной пасты (рис. 3).

Для нагрева такого же количества воды от 12 °C до 50 °C в электронагревателе потребовалось 10,4 кВт·ч, затем для измельчения 90 кг зерновой смеси и нагрев полученной массы от 40 °C в агрегате тепловой обработки было затрачено еще 22,6 кВт·ч (рис. 4). Значит общие затраты электроэнергии составили 33 кВт·ч, или 0,37 кВт·ч на 1 кг пасты.

Как видно из циклограмм (рис. 3, 4), расход энергии на нагрев и измельчение зерновых компонентов при использовании постороннего водонагревателя позволяет уменьшить время нагревания и набухания зерна, что приводит к уменьшению расхода электроэнергии.

По результатам испытаний стоимость 1 л ЗЦМ, приготовленного в хозяйстве на базе местного зернофуража, не превышает 240 руб., в то время как 1 л ЗЦМ, приготовленный на сухом порошке, составляет 360—460 руб., а привесы телят практически одинаковые.

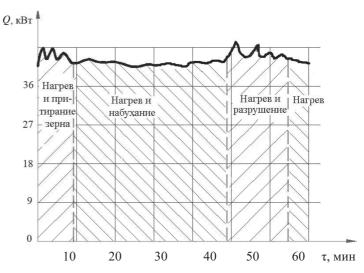


Рис. 3. Циклограмма расхода электроэнергии при измельчении зерна с одновременным нагревом массы (зерно и вода с начальной температурой 12°C)

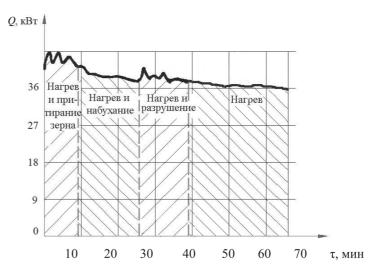


Рис. 4. Циклограмма расхода электроэнергии при измельчении зерна с одновременным нагревом массы (зерно и вода с начальной температурой 50–40 °C)

Комплект оборудования для приготовления ЗЦМ (ОПЗМ-0,9) успешно прошел приемочные испытания на Белоруской МИС, и Минсельхозпрод РБ рекомендовал его к выпуску.

Выводы

- 1. На основании исследований разработан отечественный энергосберегающий комплект оборудования ОПЗМ-0,9 для приготовления ЗЦМ из местных зерновых кормов.
- 2. Использование влаготепловой обработки зернофуража позволяет получать мелкодисперсную однородную массу, что очень важно при приготовлении заменителя цельного молока.
- 3. Применение влаготепловой обработки зернофуража не уменьшает количество питательных веществ в полученном продукте, количество сахара даже несколько увеличивается.
- 4. Разработанный комплект оборудования с использованием измельченных зерновых компонентов и горячей (40–50 °C) воды позволяет уменьшить расход электроэнергии на приготовление ЗЦМ минимум в 1,5 раза.
- 5. На приготовление 1 л ЗЦМ в хозяйственных условиях затрачивается в 1,8–2,2 раза меньше денежных средств по сравнению с использованием зарубежного аналога.

Литература

- 1. И з м а й л о в И. С. Заменители цельного молока из растительных компонентов // Зоотехния. 1987. № 11. С. 32–33.
- 2. Голушко В. М., Горячев И. И., Передня В. И., Пилюк С. Н. Заменители цельного молока из местных источников питательных веществ // Зоотехническая наука Беларуси: Сб. науч. трудов. Т. 41. Жодино: Институт животноводства НАН Беларуси, 2006. С. 159–164.
 - 3. Способ получения заменителя цельного молока для телят: Пат. № 23132229 от 27.12.2007 г. / Голушко В. М. и др.
 - 4. Способ приготовления жидкого зернового корма: Пат. № 2313229 от 27.12.2007 г. / В. И. Передня, Ю. А. Цой.
- 5. Передня В. И., Пунько А. И. Совершенствование технологии и средств механизации подготовки и скармливания кормов на скотоводческих фермах // Материалы II Междунар. науч.-практ. конф. «Машинные технологии и новая сельскохозяйственная техника для условий Евро-Северо-Востока России». Киров, 2000.
 - 6. Агрегат для приготовления заменителей молока АЗМ-0,8: Каталог сельскохозяйственной техники. М., 1980.
 - 7. Кормоприготовительный агрегат «МРИЯ»: Проспект. г. Новая Каховка, Херсонская обл.

V. V. AZARENKO, I. I. GORIACHEV, V. I. PEREDNIA

PREPARING TECNOLOGY OF THE WHOLE MILK SUBSTITUTE FROM GRAIN COMPONENTS

Summary

A new technology and a set of equipment OPZM-0.9 for production of a whole milk substitute (WMS) from different grain components that are at the disposal of farms are presented. Use of moisture-thermal processing of grain forage enables producing fine-dispersed mass, which is very important for preparing WMS. Use of such processing does not decrease the amount of nutrient substances in a prepared product and the sugar amount even somewhat increases. The developed equipment together with the use of coarse-crushed grain components and hot water (40–50°C) permits the electric energy spent for SWM production to be decreased at minimum by a factor of 1.5, whereas the production of one liter of WMS under farm conditions needs less money resources by a factor of 1.8–2.2 as compared to the use of the foreign analog.