ВЕСЦІ НАЦЫЯНАЛЬНАЙ АКАДЭМІІ НАВУК БЕЛАРУСІ № 3 2008 СЕРЫЯ АГРАРНЫХ НАВУК

УДК 639.371.5:591.531.1

В. В. КОНЧИЦ, В. Г. ФЁДОРОВА, А. М. КИБИСОВ, О. В. МИНАЕВ

ТЕХНОЛОГИЧЕСКИЕ АСПЕКТЫ ПОДРАЩИВАНИЯ ЛИЧИНОК ВЕСЛОНОСА ДО ЖИЗНЕСТОЙКОЙ СТАДИИ

Институт рыбного хозяйства

(Поступила в редакцию 16.06.2008)

В рыночных условиях особый интерес представляют низкозатратные, ресурсосберегающие технологии рыбоводства. Такие технологии в прудовом рыбоводстве основаны на применении поликультуры рыб, способных максимально использовать естественные кормовые ресурсы водоема и своими высокопотребительскими свойствами окупить затраты на их выращивание. Наиболее перспективным в этом отношении является представитель осетровообразных рыб – веслонос (Polyodon spathula (Walbaum).

Веслонос единственный представитель осетровообразных, потребляющий в пищу зоопланктон. Это уникальная особенность, наряду с быстрым темпом роста, высокими вкусовыми качествами мяса и деликатесной черной икрой, делает его весьма перспективным объектом рыборазведения. Использование веслоноса как объекта прудового и пастбищного рыбоводства позволит утилизировать огромные биоэнергетические ресурсы внутренних водоемов Беларуси в виде продукции зоопланктона и детрита, слабо используемые местными видами рыб, трансформируя их в ценную рыбную продукцию без затрат дорогостоящих комбикормов.

Впервые в качестве объекта для вселения в южные районы европейской части СССР веслонос был предложен профессором Б. С. Ильиным [1]. В отделе акклиматизации ВНИИПРХа под руководством докт. биол. наук, проф. В. К. Виноградова и канд. биол. наук Л. В. Ерохиной было разработано биологическое обоснование на акклиматизацию веслоноса в СССР [2].

Первые исследования биологии веслоноса в новых условиях обитания были начаты в СССР в 70–80 гг. XX века [3]. Исходным материалом для изучения послужила небольшая партия личинок, завезенная в 1974 г. из США в рыборазводной завод «Горячий ключ» Краснодарского края. К настоящему времени учеными ВНИИПРХа разработаны технологические приемы воспроизводства и выращивания рыбопосадочного материала и товарной рыбы для шестой зоны рыбоводства России [4].

В Республике Беларусь экспериментальные работы по выращиванию веслоноса проводятся с 2001 г. Изучали вопросы возможности использования веслоноса как объекта разведения в условиях Беларуси [5], его адаптации к климатическим условиям нашей республики [6]. Определяли рыбоводные, экстерьерные показатели при выращивании в условиях прудовых хозяйствах Беларуси [7, 8]. Изучали развитие естественной кормовой базы и питание веслоноса в прудах при выращивании в поликультуре с другими аборигенными видами рыб и экологические условия [9, 10]. В результате проведенных научных исследований в Республике Беларусь установлено, что веслонос характеризуется высокой пластичностью к абиотическим и биотическим факторам, высокими показателями темпа роста, что делает возможным рекомендовать его для использования в качестве объекта поликультуры прудового рыбоводства.

В то же время для широкого введения веслоноса в поликультуру рыбоводства Республики Беларусь необходимо разработать технологические параметры формирования собственного ремонтно-маточного стада веслоноса, а также научно обоснованные технологические приемы воспроизводства, подращивания личинок, выращивания рыбопосадочного материала и товарной

рыбы. Наиболее сложным технологическим звеном при выращивании веслоноса является производство рыбопосадочного материала, одним из элементов которого является подращивание личинок до жизнестойкой стадии.

Цель настоящей работы — определение технологических аспектов подращивания личинок веслоноса до жизнестойкой стадии.

Материалы и методы исследования. Для проведения эксперимента подращивания личинок веслоноса использовали личинок, завезенных в мае 2007 г. в инкубационный цех СПУ «Изобелино» Минской обл. из ООО «Рыбоводное хозяйство им. Мирошниченко» г. Ростов-на-Дону Российской Федерации. Подращивание личинок веслоноса проводили с 25 мая по 21 июня 2007 г. Испытывали три варианта с четырехкратной повторностью, отличающиеся плотностью посадки личинок веслоноса: І вариант − 3 тыс экз/м³, ІІ вариант − 2 тыс экз/м³, ІІІ вариант − 1 тыс экз/м³. Частота кормлений во всех вариантах была одинаковая − 6−8 раз в сутки. Начальная масса пятисуточных личинок составляла 20,0 мг. Подращивание осуществляли в садках, изготовленных из капронового сита № 23, объемом 0,15 м³ каждый. Садки по 6 шт. размещали в лотках ейского типа, находящихся в инкубационном цехе с подогревом воды. В двух лотках размещено 12 садков, в которых проводили подращивание личинок веслоноса.

Контроль параметров водной среды проводили постоянно. Температуру воды в цеху измеряли каждые 2 ч. Ежедневно определяли кислород и рН. Полный гидрохимический анализ проводили в начале и конце подращивания личинки. Пробы на гидрохимический режим отбирались в каждом лотке.

Измерение температуры проводили ртутным термометром. Очистку лотков и садков проводили с помощью мягких трубок и сифона. Каждый день проводили полную смену садков (поскольку происходило их сильное загрязнение кормом и продуктами жизнедеятельности личинок).

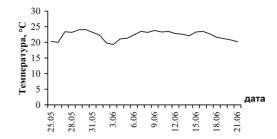
Сбор и обработку проб на питание осуществляли согласно Инструкции по сбору и обработке материала для исследования питания рыб [11]. Отбор, фиксацию проб воды и последующий гидрохимический анализ проводили по общепринятым методикам [12–14].

Взвешивание подращиваемой молоди веслоноса массой до 500 мг проводили на торсионных весах, а особей массой более 500 мг взвешивали на технических и портативных весах. Кормление личинок осуществляли живыми кормами. Отбор проб на питание проводили после кормления в утреннее время. С каждого садка отбирали по 10 экз. Отобранные пробы фиксировали 4%-ным раствором формалина в пенициллиновых пузырьках.

Культивирование яиц артемии проводили в аппаратах Вейса и ВНИИПРХа при круглосуточном освещении.

Для сравнения результатов подращивания личинок веслоноса при аналогичных плотностях посадки в разные годы использовали данные подращивания личинок веслоноса, полученные в 2006 г.

Результаты и их обсуждение. Как видно на рисунке, *температурный режим* воды в течение всего периода подращивания личинок веслоноса находился в пределах 20,0–23,8 °C. Кратковременное снижение температуры воды до 19,8 и 19,3 °C отмечалось только 2-го и 3-го июня, что не повлияло на результаты подращивания личинок веслоноса.


Гидрохимический режим в период подращивания также был удовлетворительным. Содержание растворенного в воде кислорода наблюдалось в пределах 6,2–8,4 мг/л. Свободная двуокись углерода не превышала значение 9,0 мг/л. Величина водородного показателя рН находилась в пределах 7,0–8,0.

Питание подращиваемой молоди веслоноса. В качестве живого корма в период подращивания личинок веслоноса использовали зоопланктон (Daphnia longispina, D. magna, Bosmina longirostris, Polyphemus pediculus, Ceriodaphnia quadranqula, Scapholeberis sp., Cyclops sp.), отловленный в прудах, и науплий A. salina, получаемых при культивировании яиц артемии. Отловленный в прудах зоопланктон процеживали через сито с размером ячеи вначале подращивания 0,25 мм, в дальнейшем размер ячеи увеличивали до 4,00 мм. Численность зоопланктона в садках поддерживали на уровне 5 тыс. экз/л.

Наблюдения за поведением подращиваемых личинок веслоноса показали, что оно в период подращивания было неодинаковым. Первые несколько суток при раздаче живого корма личинки веслоноса собирались в своеобразный рой и концентрировались в тех местах, куда задавался корм.

На 3—4-й день, по мере роста рострума, часть личинок веслоноса начала потреблять корм в толще воды, а часть пыталась подбирать его со дна. Спустя 6—7 дней большинство личинок питались в толще воды, так как корм, находящийся на дне, был для него недоступен из-за увеличившегося в размерах рострума, но была часть личинок (отставшие в росте), которые подбирали корм со дна.

Важно отметит такой выявленный технологический элемент в период подращивания личинок веслоноса, как ежедневную чистку и смену садков

Динамика среднесуточной температуры воды в период подращивания личинок веслоноса, 2007 г.

от загрязнения продуктами жизнедеятельности подращиваемых личинок и вносимого корма. Для этого необходимо иметь комплект сменных садков и ежедневно загрязненные садки менять на чистые, так как чистка загрязненных садков, не снимая с лотка, затруднена и отрицательно сказывается на условиях среды.

В период подращивания личинок веслоноса отмечено, что отдельные, лидирующие в росте особи способны потреблять в пищу наиболее мелких, отставших в росте особей. Это явление наблюдается при достижении молодью веслоноса массы 200–300 мг. Во избежание явления каннибализма и отхода в период подращивания личинок веслоноса крупные особи подращиваемого веслоноса отлавливали и пересаживали в отдельный садок, где продолжалось их подращивание.

Исследования пищевого комка подращиваемого веслоноса позволили установить, что он потреблял практически все организмы, встречавшиеся в отловленном в пруду зоопланктоне и задаваемые науплии A. salina. Встречавшихся в пищевом комке объектов питания веслоноса можно отнести к трем группам организмов Cladocera, Copepoda и Euphyllopoda (табл. 1).

Среди групп потребляемых организмов лидируют *Cladocera*, затем *Euphyllopoda и Copepoda*. Преобладающим среди *Cladocera* были *Daphnia magna* – они занимали до 83,5% от общей массы пищевого комка. Из группы *Euphyllopoda* в питании подращиваемых личинок веслоноса преобладали науплии *Artemia salina* – до 44,4% от массы пищевого комка.

Изучение качественного состава пищевого комка, личинок, питавшихся зоопланктоном, показало, что наибольшим видовым разнообразием в пищевом комке веслоноса характеризовались ветвистоусые ракообразные (*Cladocera*).

Оптимальные температурные и гидрохимические условия, созданные для подращивания личинок веслоноса, благоприятно сказались на интенсивности питания. Общий индекс потребления пищи, подращиваемого веслоноса, наблюдался в пределах 440-560 °/ $_{000}$, в отдельных случаях он возрастал до 930 °/ $_{000}$.

Группа организмов	Род, вид	% от массы пищевого комка	
Cladocera	Bosmina longirostris	7,7-62,2	
	Polyphemus pediculus	0,4-3,3	
	Ceriodaphnia quad- ranqula.	0,6-0,7	
	Daphnia magna	26,2-83,5	
	Daphnia longispina	77,0-83,3	
	Scapholeberis sp.	0,4-0,6	
Copepoda	Cyclops sp.	3,1	
Euphyllopoda	Artemia	0,6-26,7	
	Науплии Artemia	4,3-44,4	
	Яйца Artemia	0,1-1,4	

Анализируя данные табл. 2, можно отметить, что выживаемость по садкам колебалась в пределах 23,3–55,3%, среднее по вариантам – 29,8–38,8%. Различия в показателях выживаемости между вариантами небольшие, однако в нашем эксперименте прослеживается обратная зависимость между выживаемостью и плотностью посадки. Такая же закономерность прослеживается между средней массой подрощенных личинок веслоноса и плотностью посадки. Средняя масса по вариантам больших отличий не имеет, но все же максимальная она получена при наиболее низкой плотности посадки.

Таблица 2. Основные рыбоводные показатели подращивания личинок веслоноса

Вариант опыта	№ садка	Выловлено всего, экз.	Средняя масса, мг	Выживаемость,
I	C-1	135	1000	30,0
	C-2	133	1400	29,6
	C-3	119	1400	26,4
	C-4	150	1400	33,3
Среднее		134	1300	29,8
II	C-5	99	1700	33,0
	C-6	99	1300	33,0
	C-7	93	900	26,6
	C-8	96	1300	32,0
Среднее		97	1300	32,2
III	C-9	83	1400	55,3
	C-10	69	1400	46,0
	C-11	46	1400	30,7
	C-12	35	1400	23,3
Среднее	·	58	1400	38,8

Сравнивая результаты подращивания личинок веслоноса в 2006 и 2007 гг. можно отметить, что они имеют различие (табл. 3).

Таблица 3. Сравнительный анализ результатов подращивания личинок веслоноса в 2006 и 2007 гг.

Плотность посадки, экз/м ³	Выживає	емость, %	Средняя масса, мг		Средний прирост за сутки, мг	
	2006 г.	2007 г.	2006 г.	2007 г.	2006 г.	2007 г.
3000	44,2	29,8	862,5	1300	30,8	46,4
2000	50,3	32,2	1077,0	1300	38,5	46,4
1000	33.8	38.8	633.1	1400	35.7	50.0

Так, в 2007 г. прослеживается закономерность зависимости выживаемости, средней массы и среднесуточного прироста от плотности посадки, в то же время в 2006 г. такой четкой закономерности не прослеживалось. Это можно объяснить тем, что на показатели роста, выживаемости оказывает влияние не только плотность посадки, но и другие факторы: количество и качество пищи, температурные и гидрохимические условия. В 2006 г. кроме плотности посадки испытывали различные корма (живой и стартовый корм). В 2007 г. подращивали только на живом корме. Более низкая выживаемость подращиваемых личинок веслоноса в 2007 г. по сравнению с 2006 г. связана с имевшим место неоднократным отсутствием возможности подачи воды из-за браконьерского спуска головного пруда, который является основным источником воды.

Выводы

- 1. Обязательным технологическим элементом подращивания личинок веслоноса должна быть постоянная чистка садков от загрязнения продуктами жизнедеятельности подращиваемых личинок и вносимого корма и ежесуточная смена загрязненных садков чистыми.
- 2. Во избежание явления каннибализма в период подращивания личинок веслоноса необходимо при достижении массы веслоноса 200–300 мг проводить сортировку и отсадку лидирующих особей в отдельный садок.

- 3. При кормлении подращиваемой молоди веслоноса предпочтение следует отдавать живым кормам, так как искусственные корма быстро становятся недоступными из-за рострума, который препятствует взятию их со дна садка.
- 4. Выживаемость личинок веслоноса зависит от многих факторов: обеспеченности качественным кормом, создания оптимальной температуры и гидрохимических условий
 - 5. Средняя масса подращиваемой молоди веслоноса за 28 дней достигает 1300–1400 мг.

Литература

- 1. Ильин Б. С. Ихтиофауна Северной Америки как источник рекрутов для акклиматизации // Тр. ВНИРО. 1960. Т. 43. Вып. 1. С. 31–65.
- 2. В и н о г р а д о в В. К., Е р о х и н а Л. В. Представители североамериканской ихтиофауны как объекты рыбоводства и акклиматизации во внутренних водоемах СССР // Изв. ГосНИОРХ. 1975. Т. 103. С. 220–225.
- 3. В и ноградов В. К., Ерохина Л. В. Новые объекты рыбоводства и акклиматизации // Рыбное хозяйство. 1976. № 10. С. 10–13.
- 4. В и н о г р а д о в В. К., Е р о х и н а Л. В., М е л ь ч е н к о в Е. А. Биологические основы разведения и выращивания веслоноса (*Polyodon spathula* (Walbaum). М.: ФГНУ «Росинформагротех», 2003. 344 с.
- 5. Кончиц В. В., Чутаева А. И., Мамедов Р. А. и др. Веслонос, представитель осетрообразных // Белорусское сельское хозяйство. 2003. № 6 (14). С. 36–37.
- 6. Кончиц В. В., Чутаева А. И., Хасеневич А. И. и др. Абиотические условия и биотические факторы при зимовке веслоноса // Стратегия развития аквакультуры в условиях XXI века: Материалы междунар. науч.-практ. конф. Минск, 2004. С. 307–310.
- 7. Кончиц В. В., Чутаева А. И., Мамедов Р. А. идр. Экстерьерные показатели двухлеток веслоноса нового объекта рыбоводства // Вопросы рыбного хозяйства Беларуси: Сб. науч. тр. Института рыбного хозяйства. Минск, 2003. Вып. 19. С. 117–120.
- 8. Кончиц В. В., Чутаева А. И., Мамедов Р. А. и др. Рыбоводные показатели выращивания двухлеток веслоноса в прудах II зоны рыбоводства Беларуси // Вопросы рыбного хозяйства Беларуси: Сб. науч. труд. Института рыбного хозяйства. Минск, 2003. Вып. 19. С. 112–117.
- 9. Кончиц В. В., Чутаева А. И., Мамедов Р. А. и др. Развитие кормовой базы и питание двухлеток // Вопросы рыбного хозяйства Беларуси: Сб. науч. тр. Института рыбного хозяйства. Минск, 2003. Вып. 19. С. 120–126.
- 10. К о н ч и ц В. В., Ч у т а е в а А. И., М а м е д о в Р. А. и др. Экологические условия при выращивании в прудах трехлеток веслоноса (*Polyodon spathula* Walbaum) и его рыбохозяйственная характеристика // Вопросы рыбного хозяйства Беларуси: Сб. науч. тр. Института рыбного хозяйства. Вып. 20. Минск, 2004. С. 44–51.
- 11. Методическое пособие по изучению питания и пищевых отношений рыб в естественных условиях / Отв. ред. Е. В. Боруцкий [ред. кол. Е. В. Боруцкий, М. В. Желтенкова, А. С. Константинов, О. А. Попова]. М., 1974. 254 с.
- 12. Алекин О. А., Семенов А. Д., Скопинцев Б. А. Руководство по химическому анализу вод суши. Л.: Гидрометиоиздат, 1973. 260 с.
- 13. Унифицированные методы анализа вод СССР / Под ред. Ю. Ю. Лурье / Гидрохимический институт. Вып. 1. Л.: Гидрометеоиздат, 1978.
- 14. Инструкция по химическому анализу воды прудов / И. С. Шестерин, Т. Л. Розова, Л. А. Богданова и др. М.: ВНИИПРХ, 1984. 49 с.

V. V. KONCHITS, V. G. FIODOROVA, A. M. KIBISOV, O.V. MINAEV

TECHNOLOGICAL ISSUES OF THE PAADLE-FISH LARVA GROWING UP TO THE VIABLE STAGE

Summary

The results of the paddle-fish growing-up in the year 2007 has been analysed. Certain regularities and dependencies of the larva growing results from biotic and abiotic factors has been revealed. Some technological elements of the paddle-fish larva growing are proposed.