ВЕСЦІ НАЦЫЯНАЛЬНАЙ АКАДЭМІІ НАВУК БЕЛАРУСІ №3 2009 СЕРЫЯ АГРАРНЫХ НАВУК

УДК 636.4.082.2:575.22

Т. В. БАТКОВСКАЯ

ГЕНОТИП СВИНЕЙ И ЕГО ВЛИЯНИЕ НА РЕПРОДУКТИВНЫЕ, ОТКОРМОЧНЫЕ И МЯСНЫЕ КАЧЕСТВА

Научно-практический центр НАН Беларуси по животноводству

(Поступила в редакцию 16.06.2009)

Увеличение продуктивности свиней продолжает оставаться острой проблемой. Для ее решения необходимо форсировать совершенствование существующих и создание новых пород и типов с высоким генетическим потенциалом продуктивности, приспособленных к эксплуатации в условиях интенсивной технологии.

Один из эффективных методов ускоренного создания высокопродуктивных стад — межпородное скрещивание с использованием генофонда лучших специализированных пород мира, таких как йоркшир, ландрас и дюрок [1].

Важное место в этой работе отводится совершенствованию племенных и продуктивных качеств крупной белой и белорусской мясной породы свиней, которые по численности занимают первое и второе место, а по энергии роста, убойному выходу и другим показателям — одно из первых мест среди разводимых в республике пород свиней.

При чистопородном разведении достигнуть увеличения продуктивности маток очень сложно, учитывая низкий коэффициент наследуемости репродуктивных признаков. Одним из путей увеличения этого показателя в промышленном свиноводстве является использование скрещивания чистопородных и помесных маток с хряками зарубежных пород [2].

Одним из главных показателей интенсивности развития свиноводства является скороспелость, которая имеет тесную связь со среднесуточным приростом: мясность туш в значительной степени зависит от вида кормов, их поедаемости и усвояемости. Снижение потребления кормов способствует получению мясных туш, но задерживает рост животных. Сочетание высокой мясности и скорости роста в значительной степени определяется породой, генетической способностью к интенсивному росту мышечной ткани при полноценном кормлении. Как свидетельствует мировой опыт свиноводства, все эти качества трудно объединить в одной породе из-за низкой эффективности одновременной селекции по многим признакам. Наиболее оптимальным решением этой проблемы в товарном свиноводстве является использование в скрещивании специализированных мясных пород [3, 4].

Цель исследования – изучение репродуктивных качеств чистопородных и помесных маток, откормочных и мясных признаков потомков, полученных при двух- и трехпородном скрещивании с использованием хряков дюрок, йоркшир и ландрас канадской селекции.

Материалы и методы исследования. Научно-хозяйственный эксперимент проведен в ЗАО «Клевица» Березинского р-на Минской области в 2007–2009 гг. В опытах использовались чисто-породные свиноматки и хряки крупной белой породы, помесные матки (КБ×БМ), (БМ×Л), а также импортные хряки пород дюрок, йоркшир и ландрас канадской селекции. Репродуктивные качества свиноматок оценивали по многоплодию (гол.), крупноплодности поросят (кг), молочности (кг), количеству поросят при отъеме в 24-дневном возрасте (гол.), массе гнезда при рождении и отъеме (кг), средней массе одного поросенка при отъеме.

В качестве контроля использовали чистопородных свиноматок крупной белой породы. Для оценки откормочных и мясных качеств были сформированы и поставлены на контрольный откорм одна контрольная и пять опытных групп, по 35 гол. молодняка свиней в каждой. Подопытное поголовье находилось в одинаковых условиях кормления и содержания. Кормление животных осуществляли комбикормами в соответствии с технологией, принятой в хозяйстве. Для оценки откормочной продуктивности учитывали следующие показатели: возраст достижения живой массы 100 кг, среднесуточный прирост (г), расход корма на 1 кг прироста живой массы (к. ед.). Контрольный убой молодняка (по 21–27 гол. из каждой группы) проводили согласно методическим рекомендациям ВИЖа и ВНИИМП (1978) по достижению животными живой массы 100 кг. Для изучения мясных качеств определяли предубойную массу (кг), массу охлажденной туши (кг), длину туши (см), толщину шпика над 6–7-ми грудными позвонками (мм), площадь «мышечного глазка» (см²) и массу задней трети полутуши (кг). Для определения морфологического состава туш была проведена обвалка 5–6 полутуш молодняка каждого генотипа.

Обработку и анализ полученных результатов проводили по общепринятыми методами вариационной статистики на ПК.

Результаты и их обсуждение. В результате исследований получены данные, которые свидетельствуют о значительных различиях в показателях репродуктивных признаков свиноматок различных породных сочетаний, осемененных хряками пород дюрок, йоркшир и ландрас канадской селекции (табл. 1).

Порода, сочетание матка × хряк	n	Многоплодие, гол.		Масса гнезда при рож-	Масса 1 поросенка при	Молочность, кг			
		всего	в т. ч. живых	дении, кг	рождении, кг	WOJOHOCIB, KI			
КБ×КБ	75	10,67±0,19	10,51±0,17	13,05±0,14	1,25±0,01	52,03±0,24			
КБ×Й	47	10,96±0,16	$10,83\pm0,17$	14,61±0,32xxx	1,35±0,02 ^{xxx}	54,47±0,22xxx			
(КБ×БМ)×Д	47	10,06±0,23 ^x	9,87±0,22 ^x	14,09±0,31 ^{xx}	1,43±0,01 ^{xxx}	52,59±0,39			
(КБ×БМ)×Л	43	11,07±0,19	$11,05\pm0,18^{x}$	14,63±0,27 ^{xxx}	1,33±0,01 ^{xxx}	54,20±0,31 ^{xxx}			
(БМ×Л)×Д	36	10,22±0,23	$10,00\pm0,24$	14,66±0,35xxx	1,47±0,01 ^{xxx}	52,84±0,53			
(БМ×Л)×Л	48	11,38±0,13 ^{xx}	11,23±0,13xx	14,83±0,22xxx	1,32±0,01 ^{xxx}	54,90±0,24xxx			

Таблица 1. Показатели многоплодия, крупноплодности и молочности свиноматок различных генотипов

Лучшими репродуктивными качествами среди опытных групп отличались помесные свиноматки КБ×БМ и БМ×Л при скрещивании с хряками породы ландрас, у которых эффект гетерозиса по многоплодию по сравнению с чистопородными свиноматками крупной белой породы составил 5,1 и 6,9% ($P \le 0,01$) соответственно.

У свиноматок крупной белой породы при сочетании с хряками породы йоркшир показатель многоплодия по сравнению с контрольной группой оказался выше на 3,0%. При использовании хряков породы дюрок многоплодие помесных свиноматок КБ×БМ и БМ×Л снизилось на 6,1 и 4.9% ($P \le 0.05$) соответственно.

Наиболее крупноплодными оказались помесные свиноматки КБ×БМ, БМ×Л при сочетании с хряками породы дюрок, у которых средняя живая масса одного поросенка составила 1,43—1,47 кг. Превосходство над контрольной группой по этому признаку составило 14,4 и 17,6% (P<0,001) соответственно. Вероятно, это связано с тем, что свиноматки, осемененные хряками породы дюрок, имели более низкое многоплодие. У свиноматок остальных опытных сочетаний – КБ×Й, (КБ×БМ)×Л и (БМ×Л)×Л – показатель этого признака увеличился по сравнению с аналогичным показателем контрольной группы на 8, 6,4 и 5,6% (P<0,001) соответственно.

Установлено достоверное превышение свиноматок всех опытных групп по массе гнезда при рождении на 8-13,6% ($P \le 0,001$) по сравнению с животными контрольной группы.

Молочность свиноматок – один из важных селекционных признаков, который в большой мере определяет дальнейший рост и развитие поросят. По молочности выявлено достоверное

^x $P \le 0.05$; ^{xx} $P \le 0.01$; ^{xxx} $P \le 0.001$. То же для табл. 2-6.

превосходство над средним показателем этого признака контрольной группы у свиноматок следующих сочетаний: КБ×Й – на 2,44 кг, или 4,7% (P<0,001), (КБ×БМ)×Л – на 2,17 кг, или 4,2% (P<0,001), и (БМ×Л)×Л – на 2,87 кг, или 5,5% (P<0,001). В сочетаниях (КБ×БМ)×Д и (БМ×Л)×Д проявилась тенденция к повышению молочности на 1,1 и 1,6% соответственно.

Установлено увеличение количества поросят при отъеме на 0,36-0,78 гол. у свиноматок опытных групп КБ×Й, (КБ×БМ)×Л и (БМ×Л)×Л (табл. 2).

Порода, сочетание						
матка × хряк	n	кол-во поросят, гол.	масса гнезда, кг	масса одного поросенка, кг	Сохранность, %	
КБ×КБ	75	9,60±0,15	67,27±1,01	7,02±0,04	91,3	
КБ×Й	47	9,96±0,19	72,70±1,39 ^{xx}	7,31±0,06 ^{xxx}	92,0	
(КБ×БМ)×Д	47	8,74±0,14 ^{xxx}	61,81±1,17 ^{xxx}	7,06±0,06	88,5	
(КБ×БМ)×Л	43	10,23±0,20 ^x	76,70±1,74 ^{xxx}	$7,49\pm0,07^{xxx}$	92,6	
(БМ×Л)×Д	36	8,69±0,12xxx	61,22±1,10xxx	7,04±0,07	86,9	
(БМ×Л)×Л	48	$10,38\pm0,16^{xxx}$	78,01±1,17 ^{xxx}	$7,53\pm0,05^{xxx}$	92,4	

Таблица 2. Показатели сохранности поросят, массы гнезда и одного поросенка при отъеме

Масса гнезда при отъеме считается главным критерием репродуктивной способности свиноматок. Он объединяет не только многоплодие и крупноплодность поросят, но и способность маток выкормить приплод, обеспечить интенсивность роста и сохранность поросят. Однако величина эта резко колеблется и во многом зависит не только от генетических факторов, но и от уровня племенной работы в стаде, в частности от сочетаемости родительских пар [4, 5].

По этому признаку достаточно высокий эффект гетерозиса выявлен у свиноматок в следующих сочетаниях: $K B \times \check{H} - 8,1\%$ ($P \le 0,01$), ($K B \times B M$)×Л − 14,0% ($P \le 0,001$) и ($E M \times J$)×Л − 16% ($P \le 0,001$). В этих же сочетаниях показатель сохранности составил 92,0–92,6%.

У помесных свиноматок КБ×БМ и БМ×Л при использовании хряков породы дюрок на заключительном этапе скрещивания показатель массы гнезда при отъеме оказался достоверно (P<0,001) ниже аналогичного показателя контрольной группы на 5,46 и 6,05 кг.

По массе одного поросенка к отъему достаточно высокие показатели выявлены у свиноматок в сочетаниях $K B \times H = 7,31$ кг, $(K B \times M) \times H = 7,49$ кг и $(B M \times H) \times H = 7,53$ кг. Животные опытных групп превосходили аналогов контрольной группы по показателю данного признака на 4,1, 6,7 и 7,3% ($P \le 0,001$).

Откормочные качества служат основным показателем продуктивности и зависят от кормления, содержания и генетических особенностей свиней, эти признаки характеризуют скороспелость и среднесуточный прирост живой массы молодняка за период откорма. В понятие скороспелость животных входят рост и наращивание ими массы тела. За критерий скороспелости принимают число дней, затраченных на достижение молодняком свиней живой массы 100 кг [6, 7].

В наших исследованиях при изучении показателей откормочной продуктивности гибридного молодняка установлено, что в опытных группах по отношению к контрольной проявился гетерозис по возрасту достижения живой массы 100 кг, среднесуточному приросту и затратам корма (табл. 3).

Порода, породные сочетания	n	Возраст достижения живой массы 100 кг, сут	Среднесуточный прирост, г	Затраты корма на 1 кг прироста, к. ед.
КБ×КБ	32	190,1±0,34	704±3	3,67±0,01
КБ×Й	30	185,4±0,83 xxx	731±5 xxx	3,60±0,02 xx
(КБ×БМ)×Д	33	183,2±0,90 xxx	762±4 xxx	3,50±0,03 xxx
(КБ×БМ)×Л	29	182,2±0,67 xxx	786±5 xxx	3,42±0,04 xxx
(БМ×Л)×Д	35	179,5±0,97 xxx	801±2 xxx	3,40±0,03 xxx
(БМ×Л)×Л	34	177,2±0,88 xxx	803±2 xxx	3,38±0,03 xxx

Таблица 3. Откормочные качества молодняка различных генотипов

Выявлено, что лучшими показателями откормочной продуктивности отличался гибридный молодняк, полученный при скрещивании помесных свиноматок БМ×Л с хряками пород ландрас и дюрок, у которых возраст достижения живой массы 100 кг и среднесуточный прирост составил 177,2 сут, 803 г и 179,5 сут, 801 г (P<0,001) соответственно. Подсвинки этих сочетаний также отличались экономным расходом корма на 1 кг прироста живой массы – 3,38–3,40 к. ед. (P<0,001). Превосходство над сверстниками контрольной группы по возрасту достижения живой массы 100 кг и среднесуточному приросту у гибридного молодняка сочетания (БМ×Л)×Л составило 12,9 сут, или 6,8% (P<0,001), и 99 г, или 14,1% (P<0,001), (БМ×Л)×Д – 10,6 сут, или 5,6% (P<0,001), и 97 г, или 13,8% (P<0,001).

Достаточно высокой энергией роста (762–786 г) при низких затратах кормов (3,50–3,42 к. ед.) отличались гибриды, полученные от сочетаний (КБ×БМ)×Д, (КБ×БМ)×Л, у которых эффект гетерозиса по сравнению с аналогами контрольной группы по среднесуточному приросту составил 8,2 и 11,6% (P≤0,001) соответственно. Затраты кормов на 1 кг прироста у молодняка данных сочетаний были ниже, чем у сверстников контрольной группы на 0,17–0,25 к. ед. (P<0,001).

По возрасту достижения живой массы 100 кг гибридный молодняк сочетаний (КБ×БМ)×Д и (КБ×БМ)×Л также отличался от аналогов контрольной группы: гибриды раньше достигали живой массы 100 кг – на 6,9 и 7,9 сут (P≤0,001) соответственно.

У помесей, полученных от скрещивания чистопородных маток крупной белой породы с хряками породы йоркшир канадской селекции, возраст достижения живой массы 100 кг составил 185,4 сут, что на 4,7 сут ($P \le 0.001$) меньше по сравнению с аналогами контрольной группы; среднесуточный прирост оказался выше на 27 г, или 3,8%, ($P \le 0.001$), расход корма на 1 кг прироста снизился на 0,07 к. ед., разница достоверна ($P \le 0.01$).

В результате анализа показателей мясной продуктивности установлено, что у потомков, полученных при скрещивании помесных маток КБ×БМ и БМ×Л с хряками породы ландрас канадской селекции, показатель длины туши оказался наибольшим и составил 99,6 и 100,5 см соответственно (табл. 4). Показатель этого признака по сравнению с контрольной группой оказался выше у гибридов сочетания (КБ×БМ)×Л на 1,8 см (P≤0,001) и (БМ×Л)×Л – на 2,7 см (P≤0,001). У животных сочетания КБ×Й длина туши составила 98,9 см (P≤0,01).

Наименьшей толщиной шпика (17,22 мм) отличались животные генотипа (БМ×Л)×Л, у которых этот показатель был ниже на 28,4% (P<0,001), чем у аналогов контрольной группы. У трехпородных гибридов (КБ×БМ)×Л и (БМ×Л)×Д величина данного признака составила 19,62 и 19,30 мм (P<0,001).

Наибольшая площадь «мышечного глазка» наблюдалась у молодняка, полученного от скрещивания помесных маток КБ \times БМ и БМ \times Л с хряками пород дюрок и ландрас, у которых параметры данного признака находились в пределах 40,1-47,2 см 2 и на 16,6-37,2% (P<0,001) превышали аналогичный показатель контрольной группы.

Порода, породные сочетания	n	Длина туши, см	Толщина шпика над 6—7-ми грудными позвонками, мм	Площадь «мышечного глазка», см ²	Масса задней трети полутуши, кг
КБ×КБ	26	97,8±0,11	24,05±0,14	34,4±0,14	10,9±0,10
КБ×Й	21	98,9±0,08 xx	22,90±0,10	38,6±0,13	11,8±0,11 xxx
(КБ×БМ)×Д	25	98,5±0,05 xxx	21,35±0,11 xxx	40,1±0,09 xxx	11,9±0,05 xxx
(КБ×БМ)×Л	24	99,6±0,03 xxx	19,62±0,08 xxx	41,5±0,05 xxx	11,4±0,06 xxx
(БМ×Л)×Д	25	98,9±0,10 xxx	19,30±0,07 xxx	43,7±0,08 xxx	11,9±0,08 xxx
(БМ×Л)×Л	27	100,5±0,15 xxx	17,22±0,04 xxx	47,2±0,06 xxx	11,6±0,03 xxx

Таблица 4. Мясосальные качества молодняка различных генотипов

По величине массы задней трети полутуши лучшими оказались трехпородные гибриды, полученные с участием хряков породы дюрок – 11,9 кг, что на 9,2% (P<0,001) выше чистопородных аналогов крупной белой породы. У подсвинков сочетаний КБ×Й, (КБ×БМ)×Л, (БМ×Л)×Л также

выявлено достоверное превосходство над контрольной группой по массе задней трети полутуши — на 0.9, 0.5 и 0.7 кг ($P \le 0.001$) соответственно.

При анализе морфологического состава туш свиней различных генотипов установлено, что наиболее мясными они оказались у молодняка трехпородных сочетаний (табл. 5). Выход мяса в тушах гибридов (КБ×БМ)×Л, (БМ×Л)×Д и (БМ×Л)×Л находился в пределах 63,21–65,64% и достоверно на 5,23–7,66% (P<0,001) превышал аналогичный показатель подсвинков контрольной группы.

Порода, породные сочетания		Содержание в туше, %				
	n	мясо	сало	кости	кожа	
КБ×КБ	5	57,98±0,43	22,35±0,65	12,77±0,46	6,90±0,03	
КБ×Й	6	60,03 ±0,22 xx	20,25±0,86	13,27±0,09	6,45±0,40	
(КБ×БМ)×Д	6	62,64±0,15 xxx	19,28±0,49 xx	12,34±0,44	5,74±0,35 xx	
(КБ×БМ)×Л	6	63,21±0,15 xxx	18,14±0,24 xxx	13,43±0,56	5,22±0,03 xxx	
(БМ×Л)×Д	6	64,67±0,37 xxx	16,57±0,69 xxx	13,00±0,63	5,76±0,22 xxx	
(БМ×Л)×Л	6	65,64±0,81 xxx	17,31±0,99 xx	11,87±0,40	5,18±0,29 xxx	

Таблица 5. Морфологический состав туш молодняка различных генотипов

Наибольшим содержанием сала в туше характеризовался чистопородный молодняк крупной белой породы — 22,35%. Туши гибридного молодняка оказались менее осаленными. Содержание сала у трехпородных гибридов (КБ×БМ)×Л, (БМ×Л)×Д и (БМ×Л)×Л было значительно, на 4,21—5,78% (P<0,001), ниже по сравнению с аналогами контрольной группы. У помесей (КБ×БМ)×Д содержанием сала в туше составило 19,28% (P<0,01).

Достоверных различий по относительной массе костей в составе туш животных опытных групп при сравнении с животными контрольной группы не выявлено.

Содержание кожи в составе туш у всех групп животных находилось в пределах 5,18-6,90%. Наиболее тонкой и легкой она оказалась у трехпородных животных (БМ×Л)×Л -5,18%, что на 1,72% ($P \le 0,001$) меньше аналогов чистопородных животных крупной белой породы.

При анализе морфологического состава окорока у свиней опытных групп отмечалась аналогичная тенденция увеличения содержания мяса при снижении его осаленности (табл. 6).

Порода, породные сочетания	n	Содержание в окороке, %				
		мясо	сало	кости	кожа	
КБ×КБ	5	60,14±0,37	21,73±0,47	11,94±0,24	6,19±0,10	
КБ×Й	6	61,27±0,69	20,14±0,03 xx	12,54±0,15	6,05±0,10	
(КБ×БМ)×Д	6	63,0±0,20 xxx	19,11±0,29 xx	11,94±0,31	5,95±0,20	
(КБ×БМ)×Л	6	65,08±0,09 xxx	18,11±0,10 xxx	12,11±0,50	4,70±0,11 xxx	
(БМ×Л)×Д	6	67,09±0,40 xxx	16,06±0,39 xxx	12,08±0,44	4,77±0,27 xxx	
(БМ×Л)×Л	6	67,31±0,12 xxx	16,10±0,02 xxx	12,19±0,20	4,40±0,04 xxx	

Таблица 6. Морфологический состав окорока молодняка различных генотипов

Так, содержание мяса в окороке у трехпородных гибридов (КБ×БМ)×Л, (БМ×Л)×Д и (БМ×Л)×Л было выше по сравнению с аналогами контрольной группы на 4,94, 6,95 и 7,17% (P<0,001) соответственно. Данный показатель у животных сочетания КБхЙ также оказался выше и составил 61,27%.

Одновременно достоверно уменьшилось содержание сала в окороке подсвинков опытных групп по сравнению с чистопородными животными крупной белой породы: (КБ×БМ)×Л – 18,11%, (БМ×Л)×Д – 16,06%, (БМ×Л)×Л – 16,10% при P≤0,001.

При сравнении величины процентного содержания костей в окороке животных проявилась тенденция к некоторому повышению данного показателя у опытных подсвинков. Установлено достоверное снижение процентного содержания кожи в окороке у помесей ($K \to EM$) $\times J$, ($E \to EM$) $\times J$

и (БМ \times Л) \times Л по сравнению с контрольной группой. Величина этого признака у потомков данных генотипов находилась в пределах 4,40-4,70%.

Выводы

- 1. В результате исследований установлено положительное влияние хряков пород дюрок, йоркшир и ландрас канадской селекции на репродуктивные, откормочные и мясные качества полученных гибридов.
- 2. Наиболее высокими показателями репродуктивных признаков отличались помесные свиноматки КБ×БМ и БМ×Л при использовании хряков породы ландрас, где эффект гетерозиса по многоплодию по сравнению с контрольной группой составил 14,4 и 17,6% (P≤0,001); по молочности 4,2 и 5,5% (P≤0,001), по массе гнезда при отъеме –14,0 и 16% (P≤0,001) соответственно.
- 3. Лучшими показателями откормочной продуктивности отличался гибридный молодняк сочетаний (БМ×Л)×Л и (БМ×Л)×Д, у которых возраст достижения живой массы 100 кг и среднесуточный прирост составил 177,2 сут (P<0,001), 803 г (P<0,001) и 179,5 сут (P<0,001) и 801 г (P<0,001) соответственно при затратах корма 3,38–3,40 к. ед.
- 4. По длине туши трехпородные гибриды, полученные с участием хряков пород канадской селекции (КБ×БМ)×Л, (БМ×Л)×Л и (БМ×Л)×Д, превосходили аналогов контрольной группы на 1,8, 2,7 и 1,1 см (P<0,001), по площади «мышечного глазка» на 20,6, 37,2 и 27,0% (P<0,001), по толщине шпика на 4,43, 6,83 и 4,75 мм (P<0,001) соответственно.
- 5. По массе задней трети полутуши лучшими оказались трехпородные гибриды, полученные с участием хряков породы дюрок, -11.9 кг, что на 9.2% ($P \le 0.001$) выше чистопородных аналогов крупной белой породы.

Литература

- $1. \Phi$ е д о р е н к о в а, Л. А. Селекционно-генетические основы выведения белорусской мясной породы свиней/ Л. А. Федоренкова, Р. И. Шейко. Минск: Хата, 2001. 219 с.
- 2. Ш е й к о, И. П. Новая мясная порода свиней в Беларуси / И. П. Шейко, Л. А. Федоренкова, Р. И. Шейко // Актуальные проблемы интенсификации производства продукции животноводства: материалы междунар. науч.произв. конф., Жодино, 12–13 окт. 1999 г. Минск, 1999. С. 22–25.
- 3. Горин, В. В. Изменения откормочных и мясных качеств свиней западного типа новой мясной породы в процессе создания / В. В. Горин, А. Д. Шелестов, Л. А. Федоренкова // Актуальные проблемы производства свинины: сб. науч. тр. / Одесский СХИ. Одесса. 1990. С. 69–74.
- 4. Де н и с е в и ч, В. Л. Влияние помесных хряков на мясность свиней крупной белой и черно-пестрой пород / В. Л. Денисевич, В. В. Горин, И. Ф. Гридюшко // Научные основы развития животноводства в Республике Беларусь: сб. науч. тр. Минск, 1995. Вып. 26. С. 88—95.
 - 5. Шейко, И. П. Свиноводство / И. П. Шейко, В. С. Смирнов. Минск: Ураджай, 1997. 352 с.
- 6. Φ е д о р е н к о в а, Л. А. Влияние хряков некоторых импортных пород на мясную продуктивность гибридного молодняка / Л. А. Федоренкова, Р. И. Шейко // Зоотехническая наука Беларуси: сб. науч. тр. Жодино, 2005. Т. 40. С. 128—132.
- 7. Б а б у ш к и н, В. Откормочные качества свиней различных генотипов в зависимости от метода разведения, условий кормления и содержания / В. Бабушкин. // Свиноводство. -2008. -№ 6. -C. 12-13.