ВЕСЦІ НАЦЫЯНАЛЬНАЙ АКАДЭМІІ НАВУК БЕЛАРУСІ № 1 2014 СЕРЫЯ АГРАРНЫХ НАВУК

УДК 631.8:631.582.5:631.445.24

В. В. ЛАПА, М. С. ЛОПУХ, О. Г. КУЛЕШ

ДЕЙСТВИЕ РАЗЛИЧНЫХ СИСТЕМ УДОБРЕНИЯ, ПРИМЕНЯЕМЫХ В ПЯТИПОЛЬНОМ ЗЕРНОТРАВЯНОМ СЕВООБОРОТЕ, НА ДИНАМИКУ АГРОХИМИЧЕСКИХ СВОЙСТВ ДЕРНОВО-ПОДЗОЛИСТОЙ ЛЕГКОСУГЛИНИСТОЙ ПОЧВЫ

Институт почвоведения и агрохимии, Минск, Республика Беларусь, e-mail: brissagro@biz.by

(Поступила в редакцию 10.09.2013)

Природное плодородие дерново-подзолистых и дерново-подзолистых заболоченных почв, которые составляют 87 % пашни в республике, довольно низкое. В естественном состоянии такие почвы характеризуются кислой реакцией почвенного раствора (рН_{кс1} 4,0–4,2), слабой обеспеченностью подвижными формами фосфора и калия (менее 50,0 мг на 1 кг почвы), низким содержанием гумуса (1,0–1,5 %), маломощным перегнойным горизонтом, неблагоприятными водно-физическими свойствами. На этих почвах невозможно получение высоких урожаев без оптимизации их агрохимических свойств [1].

Одним из основных приемов, позволяющих целенаправленно воздействовать на процесс почвенного плодородия, является научно обоснованное применение минеральных и органических удобрений. Длительное их внесение приводит к изменению агрохимических свойств почв. Эти изменения могут иметь положительное или отрицательное значение для питания растений, что в итоге влияет на их продуктивность.

Цель исследований – изучение динамики агрохимических свойств почвы при различных системах удобрения в севообороте.

Материалы и методы исследований. Исследования по изучению влияния различных систем применения удобрений на состояние агрохимических свойств почвы проводили в длительном стационарном полевом опыте в СПК «Щемыслица» Минского района на дерново-подзолистой легкосуглинистой почве, развивающейся на мощном лессовидном суглинке.

Полевой опыт был заложен в 1995 г. в двух последовательно открывающихся полях в 5-польном зернотравяном севообороте. В 2006—2011 гг. изучали третью ротацию севооборота со следующим чередованием культур: пелюшко-овсяная смесь на зеленую массу — озимое тритикале + клевер — клевер луговой 1-го г.п. — яровая пшеница — яровой рапс.

В схеме опыта было предусмотрено внесение различных доз азота на фоне трех уровней фосфорно-калийного питания: 1 — питание растений за счет почвенного плодородия, 2 — внесение РК в расчете на дефицитный баланс фосфора и калия в почве, 3 — внесение РК в дозах, рассчитанных на поддерживающий баланс данных элементов. Органические удобрения вносили фоном в дозе 40 т/га под пелюшко-овсяную смесь из расчета их действия и последействия на следующую культуру севооборота — озимую тритикале.

Агрохимические показатели пахотного и подпахотного горизонтов почвы определяли по общепринятым методикам: pH_{KCl} – потенциометрическим методом, содержание подвижных форм фосфора и калия – по методу Кирсанова, гумус – по методу Тюрина в модификации ЦИНАО [2].

Результаты и их обсуждение. Важным показателем состояния плодородия дерново-подзолистой почвы является реакция почвенного раствора. Как известно, природной особенностью таких почв является их повышенная кислотность. В наших исследованиях показатель pH_{KCI} почвы опытного участка на начало ротации находился в пределах 5,92-6,10, что свидетельствует

Таблица 1. Влияние удобрений на агрохимические свойства пахотного горизонта дерново-подзолистой почвы в зернотравяном севообороте, 2005–2006, 2010–2011 гг.

Вариант опыта	pH _{KCl}			Гумус, %			Р ₂ О ₅ 0,2 н НС1 мг/кг почвы			K ₂ O, 0,2 н HCl, мг/кг почвы			СаО, мг/кг почвы			MgO, мг/кг почвы			
	н.р.	к.р.	±	н.р.	к.р.	±	н.р.	к.р.	±	н.р.	к.р.	±	н.р.	к.р.	±	н.р.	к.р.	±	
Без удобрения	6,07	6,00	-0,07	1,79	1,59	-0,20	265	243	-22	92	74	-18	1322	1145	-177	310	258	-52	
Навоз, 40 т/га – фон 1	6,10	6,05	-0,04	1,87	1,73	-0,14	257	251	-6	121	92	-30	1357	1135	-222	324	268	-57	
Фон $1 + N_{120}$	6,08	5,98	-0,09	1,92	1,81	-0,12	277	266	-12	146	81	-65	1359	990	-369	320	215	-105	
Фон $1 + N_{240}$	6,05	5,99	-0,05	1,91	1,78	-0,13	289	279	-10	139	87	-52	1362	895	-468	316	190	-127	
Φ он 1 + N_{360}	6,06	6,01	-0,05	1,95	1,87	-0,08	294	274	-20	152	87	-65	1405	1025	-380	342	225	-117	
$\Phi_{\text{OH}} 1 + N_{360} P_{150}$	6,10	6,00	-0,10	2,01	1,78	-0,24	326	306	-20	156	88	-68	1446	1132	-314	363	262	-101	
$\Phi_{\text{OH}} 1 + N_{360} K_{310}$	6,09	5,95	-0,14	1,96	1,75	-0,21	307	283	-25	212	132	-80	1384	1033	-352	340	252	-88	
Φ он 1 + $P_{150}K_{310}$ – Φ он 2	5,99	5,88	-0,11	1,90	1,79	-0,11	362	378	16	226	185	-41	1316	1076	-240	334	269	-65	
$\Phi_{\text{OH}} 2 + N_{_{120}}$	6,04	5,84	-0,20	1,86	1,76	-0,10	357	362	5	220	169	-51	1302	1090	-212	331	274	-57	
Φ он 2 + N_{240}	5,92	5,82	-0,09	1,91	1,77	-0,14	363	346	-17	205	150	-55	1313	1034	-279	316	250	-66	
Φ он 2 + N_{360}	5,99	5,85	-0,14	1,92	1,88	-0,04	353	343	-11	209	191	-19	1375	1063	-312	344	253	-91	
Φ он 1 + $P_{300}K_{620}$ – Φ он 3	6,00	5,88	-0,12	1,94	1,83	-0,12	410	420	10	300	261	-40	1360	1007	-353	329	233	-96	
Φ он 3 + N_{120}	5,99	5,85	-0,14	1,91	1,78	-0,13	414	431	17	299	248	-51	1350	1009	-341	336	233	-104	
Φ он 3 + N_{240}	5,98	5,88	-0,10	1,97	1,86	-0,11	409	433	24	284	264	-20	1360	1024	-336	337	242	-96	
$\Phi_{\text{OH }} 3 + N_{360}$	5,92	5,76	-0,16	1,96	1,84	-0,12	416	433	17	298	233	-65	1344	981	-363	326	222	-105	
Φ он 3 + N_{360}	5,94	5,65	-0,29	1,96	1,83	-0,13	406	424	18	277	238	-39	1375	1153	-222	334	269	-65	
$\Phi_{\text{OH}} 3 + N_{480}$	5,96	5,67	-0,29	1,92	1,83	-0,09	387	406	19	273	218	-55	1345	1099	-246	313	263	-50	

 Π р и м е ч а н и е: н.р. — начало ротации, к.р. — конец ротации. То же для табл. 2.

о высокой степени ее окультуренности и пригодности к выращиванию большинства сельскохозяйственных культур (табл. 1). По истечении третьей ротации произошли изменения кислотности почвы в сторону некоторого ее подкисления. В вариантах с внесением неполного минерального удобрения подкисление почвы было менее выражено, чем в вариантах с внесением полных удобрений, что, вероятно, связано с применением в севообороте физиологически кислых удобрений. Таким образом, в конце ротации значения рН_{КСІ} почвы составили 5,65–6,05, что в соответствии с принятой градацией почв по степени кислотности соответствует слабокислой и близкой к нейтральной [3].

Подпахотный горизонт характеризуется повышенной кислотностью по отношению к пахотному слою (4,97-5,19) на начало ротации). В подпахотном горизонте наблюдалось увеличение рН $_{\rm KCI}$ по всем вариантам опыта на 0,07-0,25 ед., что вероятнее всего связано с вымыванием кальция и магния из пахотного горизонта (табл. 2).

Основу эффективного плодородия почв составляет органическое вещество. Органические соединения почвы содержат значительное количество элементов питания (азот, фосфор, серу, кальций, магний, микроэлементы и др.), которые после минерализации используются растениями [4].

Результаты исследований свидетельствуют о наметившейся тенденции к снижению содержания общего органического вещества в почве во всех вариантах опыта: если на начало ротации количество гумуса по вариантам опыта составляло 1,79–2,01 %, то в конце ротации – 1,59–1,88 %.

Наименьшее количество гумуса отмечалось в контрольном варианте как в начале ротации (1,79 %), что сложилось на протяжении предыдущих ротаций севооборота, так и после ее завер-

Таблица 2. Влияние удобрений на агрохимические свойства подпахотного горизонта дерново-подзолистой почвы в зернотравяном севообороте, 2005–2006, 2010–2011 гг.

Вариант опыта	pH _{KCl}		Гумус, %			P ₂ O ₅ 0,2 н HCl мг/кг почвы			${ m K_2O,0,2}$ н HCl, мг/кг почвы			СаО, мг/кг почвы			MgO, мг/кг почвы			
	н.р.	к.р.	±	н.р.	к.р.	±	н.р.	к.р.	±	н.р.	к.р.	±	н.р.	к.р.	±	н.р.	к.р.	±
Без удобрения	5,09	5,24	0,15	0,39	0,45	0,06	506	420	-87	55	67	12	1210	1184	-26	233	255	22
Навоз, 40 т/га – фон 1	5,04	5,22	0,19	0,51	0,49	-0,02	536	419	-117	71	72	1	1104	1130	26	198	242	44
$\Phi_{\text{OH }}1 + N_{_{120}}$	4,97	5,18	0,21	0,47	0,47	0,00	504	527	24	103	87	-16	946	855	-91	162	161	-1
Φ он 1 + N_{240}	5,07	5,21	0,14	0,51	0,49	-0,02	620	565	-55	99	80	-19	881	739	-143	137	135	-2
$\Phi_{\text{OH }}1 + N_{360}$	5,01	5,21	0,20	0,45	0,51	0,06	564	494	-71	115	94	-21	1037	949	-88	176	189	13
$\Phi_{\text{OH}} 1 + N_{360} P_{150}$	5,12	5,22	0,11	0,48	0,47	-0,01	524	486	-38	110	93	-17	1024	1050	27	178	224	46
Φ он 1 + $N_{360}K_{310}$	5,08	5,26	0,18	0,44	0,49	0,05	543	478	-65	111	99	-12	1097	1033	-65	190	218	28
Фон 1+Р ₁₅₀ К ₃₁₀ – фон 2	4,99	5,17	0,18	0,41	0,43	0,02	488	405	-84	115	112	-3	1197	1064	-133	241	247	7
$\Phi_{\text{OH}} 2 + N_{120}$	5,03	5,28	0,25	0,44	0,44	0,00	413	369	-45	128	105	-23	1193	1121	-72	240	262	23
Φ он 2 + N_{240}	5,18	5,32	0,14	0,44	0,45	0,01	508	416	-93	112	119	7	1053	1007	-46	192	232	40
Φ он 2 + N_{360}	5,19	5,26	0,07	0,55	0,56	0,00	474	495	21	108	109	1	1037	1027	-10	188	232	44
Фон 1 + Р ₃₀₀ К ₆₂₀ – фон 3	5,11	5,19	0,08	0,49	0,48	-0,01	577	524	-54	135	155	20	1049	1002	-47	169	219	50
Φ он 3 + N_{120}	5,07	5,22	0,15	0,51	0,51	0,00	567	534	-34	153	153	0	1066	952	-114	179	208	29
$\Phi_{OH} 3 + N_{240}$	5,08	5,33	0,25	0,60	0,59	-0,01	572	482	-90	140	148	8	1001	914	-87	171	204	33
Φ он 3 + N_{360}	5,15	5,39	0,24	0,55	0,51	-0,04	486	505	19	161	149	-12	1170	996	-174	178	211	33
Фон $3 + N_{360}$	5,10	5,35	0,25	0,41	0,44	0,03	435	370	-66	131	160	29	1226	1253	27	207	271	65
Φ он 3 + N_{480}	5,14	5,36	0,22	0,45	0,48	0,03	464	374	-91	139	139	0	1156	1092	-65	203	252	50

шения (1,59 %). В многочисленных исследованиях [4–6] отмечается, что применение в севообороте минеральных удобрений в сочетании с навозом существенно замедляет темпы убывания гумуса из почвы. В нашем опыте внесение 40 т/га соломистого навоза и его сочетание с минеральными удобрениями было недостаточным для устранения потерь гумуса за ротацию севооборота.

Наиболее высокая минерализация органического вещества почвы за пять лет исследований (11–12 % от первоначального количества) отмечена в контрольном варианте без внесения удобрений и в вариантах с внесением неполных удобрений $N_{360}P_{150}$ и $N_{360}K_{310}$, что, вероятно, связано с несбалансированностью минерального питания растений.

В распределении органического вещества по профилю почвы наблюдается закономерное снижение его содержания от пахотного к подпахотному горизонту, где количество гумуса составило в конце ротации севооборота 0,43–0,59 %, при этом за пять лет не произошло значительных изменений в содержании органического вещества в этом горизонте.

Особенностью почвы опытного участка является высокое содержание подвижного фосфора, при этом внесение удобрений в прошлые ротации севооборота привело к некоторым различиям в содержании подвижных фосфатов по вариантам опыта. Так, количество подвижного фосфора на начало ротации в вариантах без внесения фосфорных удобрений составило 257–307 мг/кг почвы, при внесении $P_{150} - 326-363$ мг/кг почвы, в вариантах с внесением $P_{300} - 387-416$ мг/кг почвы.

Систематическое внесение фосфорных удобрений – $300 \, \mathrm{kr/ra}$ д.в. фосфора за ротацию – приводило в нашем опыте к незначительному (2–6 %) накоплению в почве подвижных фосфатов. В вариантах без внесения фосфора отмечено снижение содержания подвижных фосфатов на

2–9 %. При внесении 150 кг/га д.в. фосфора положительный баланс данного элемента в почве наблюдался только на фоне внесения калийных удобрений и при применении на фоне фосфорно-калийных удобрений 120 кг/га д.в. азота. При повышении дозы азота до 240 и 360 кг/га д.в. увеличивался вынос фосфора с урожаем, в результате чего баланс фосфора оказался отрицательным.

Можно отметить, что систематическое внесение фосфорных удобрений меняет направление круговорота фосфора в сторону положительного его баланса, в итоге к концу ротации севооборота увеличилась разность в количестве подвижных фосфатов между вариантами опыта (243—433 мг/кг почвы).

Внесение фосфорных удобрений на протяжении трех ротаций севооборота привело к накоплению в почве более 300 мг/кг почвы подвижного фосфора при принятом для данных почв оптимальном уровне содержания 200–300 мг/кг почвы. Таким образом, при расчете доз фосфорных удобрений для дерново-подзолистой легкосуглинистой почвы с содержанием подвижного фосфора 300–400 мг/кг почвы целесообразно использовать коэффициент возмещения выноса на уровне 50 %.

Природной особенностью дерново-подзолистой почвы является значительное превышение содержания подвижного фосфора в подзолистом горизонте над дерновым. Такое явление обусловлено тем, что фосфор подзолистого горизонта мало используется растениями и накапливается здесь. Кроме того, в подзолистом горизонте фосфор в основном входит в состав минеральных соединений и легко извлекается слабым раствором кислоты, однако при этом в вытяжку поступают и высокоосновные фосфаты кальция, которые труднодоступны растениям [5].

Таким образом, при использовании метода Кирсанова для определения подвижных фосфатов в подзолистом горизонте следует помнить указание автора о том, что фосфаты, извлекаемые слабыми кислотами из различных горизонтов дерново-подзолистой почвы, не одинаково равноценны с точки зрения усвоения их растениями [7].

В нашем опыте содержание подвижных фосфатов по Кирсанову в подпахотном горизонте в начале ротации составляло 413–620 мг/кг почвы и не зависело от системы удобрения.

Содержание подвижного калия, определяемого по методу Кирсанова, на начало ротации севооборота в пахотном слое варьировало от 92 мг/кг почвы в контрольном варианте до 300 мг/кг почвы в вариантах с внесением наибольшей дозы калия в прошлые ротации. По всем вариантам опыта, вне зависимости от системы удобрения и применения калийных удобрений, наблюдалось снижение количества подвижного калия в почве, причем в вариантах с внесением калия с удобрениями количественное уменьшение содержания К,О незначительно отличалось от вариантов без использования калийных удобрений в севообороте. Столь высокие его потери связаны с высокой продуктивностью культур севооборота в данных вариантах. Кроме того, значительное понижение содержания калия в почве можно объяснить насыщением севооборота калиелюбивыми культурами (клевер, пелюшка), которые больше других культур выносят данный элемент и интенсивно используют не только калий удобрений, но и его почвенные запасы. Как показали исследования, внесение калия в дозах 60-120 кг/га не может ликвидировать отрицательный баланс данного элемента в почве. Таким образом, выращивание сельскохозяйственных культур на дерново-подзолистых легкосуглинистых почвах со средним и повышенным содержанием подвижных его форм требует полного восполнения выноса калия с урожаем растений и внесения дополнительных (сверх выноса) его количеств, необходимых для создания бездефицитного и положительного баланса.

В подпахотном горизонте количество подвижного калия ниже, чем в пахотном слое (67–160 мг/кг почвы), при этом потери калия из подпахотного горизонта были меньше, чем из пахотного, они в большей степени были характерны для вариантов без внесения калийных удобрений. В вариантах с применением калийных удобрений отмечалось как снижение, так и повышение количества калия.

С содержанием кальция и, в меньшей степени, магния неразрывно связана кислотность почв. Именно потери этих элементов, особенно в результате вымывания, определяют обычно подкисление и деградацию плодородия почв. Количество окиси кальция в пахотном слое в начале ро-

тации севооборота составило 1302–1446 мг/кг почвы. За ротацию севооборота количество СаО снизилось на 177–468 мг/кг почвы.

Подпахотный горизонт характеризуется более низким содержанием окиси кальция (881–1226 и 739–1253 мг/кг почвы в начале и в конце ротации севооборота соответственно). Потери кальция из подпахотного горизонта были не столь значительными и прослеживались не на всех вариантах опыта.

Магния в почве значительно меньше по сравнению с кальцием. Перед закладкой опыта содержание оксида магния в почве составляло 310–363 мг/кг почвы. За ротацию севооборота произошло значительное сокращение его количества. В то же время происходило повышение содержания магния практически по всем вариантам опыта в подпахотном горизонте, что может быть связано с выщелачиванием этого элемента из пахотного горизонта. Содержание в подпахотном слое почвы окиси магния в начале ротации севооборота составляло 137–240 мг/кг почвы, в конце ротации — 135–271 мг/кг почвы.

Выводы

- 1. Снижение значений pH_{KCl} почвы в пахотном горизонте (на 0,04-0,29 ед.) и увеличение в подпахотном слое (на 0,07-0,25 ед.), в первую очередь обусловлено вымыванием CaO и MgO из верхних слоев почвы в нижележащие, а также выносом данных элементов культурами севооборота.
- 2. Максимальный расход органического вещества (11–12 % от первоначального количества) наблюдался в контрольном варианте и в вариантах с внесением неполных удобрений $N_{360}P_{150}$ и $N_{360}K_{310}$. Следовательно, внесение 40 т/га соломистого навоза и его сочетание с минеральными удобрениями, а также возделывание в севообороте клевера лугового является недостаточным для устранения потерь гумуса за ротацию севооборота.
- 3. Систематическое внесение фосфорных удобрений меняет направление круговорота фосфора в сторону положительного его баланса, при этом содержание подвижного фосфора превысило 300 мг/кг почвы. При расчете доз фосфорных удобрений для дерново-подзолистой лег-косуглинистой почвы с содержанием подвижного фосфора 300—400 мг/кг почвы целесообразно использовать коэффициент возмещения выноса на уровне 50 %.
- 4. За пятилетнюю ротацию севооборота произошло снижение содержания подвижных форм калия по вариантам опыта на 18–80 мг/кг почвы. Следовательно, внесение калийных удобрений в дозах 60–120 кг/га д.в. не может ликвидировать отрицательный баланс данного элемента в почве.

Литература

- 1. Смеян, Н. И. К вопросу об изменении качества пахотных почв Беларуси / Н. И. Смеян // Земляробства і ахова раслін. 2004. №5. С. 16.
 - 2. Практикум по агрохимии / И. Р. Вильдфлуш [и др.]. Минск: Ураджай, 1998. 270 с.
 - 3. Справочник агрохимика / В. В. Лапа. [и др]; под ред. В. В. Лапа. Минск: Белорус. наука, 2007. 390 с.
 - 4. Кондрыко, В. Д. Рациональное использование удобрений и урожай / В. Д. Кондрыко. Минск: Ураджай, 1984. 55 с.
 - 5. Туренков, Н. И. Палево-подзолистые почвы Белоруссии/ Н. И. Туренков. Минск: Наука и техника, 1980. 216 с.
- 6. *Овчинников, М. Ф.* Баланс гумуса в дерново-подзолистой почве в зависимости от структуры севооборота / М. Ф. Овчинников // Вес. МГУ. Серия 17. 1997. № 3. С. 26–31.
 - 7. Агрохимические методы исследования почв / под ред. А. В. Соколова, Д. Л. Аскинази. Москва: Наука, 1965. 432 с.

V. V. LAPA, M. S. LOPUKH, O. H. KULESH

EFFECT OF VARIOUS FERTILIZER SYSTEMS USED IN FIVE-FIELD GRAIN-GRASS CROP ROTATION ON THE DYNAMICS OF AGROCHEMICAL PROPERTIES OF SOD-PODZOLIC LIGHT LOAMY SOIL

Summary

The article presents the data of five-year researches on the study of the effect of various fertilizer systems in crop rotation on the changes of the main agrochemical indicators (pH $_{KCI}$, humus content, mobile forms P_2O_5 and K_2O , CaO, MgO) of sod-podzolic light loamy soil.