ISSN 1817-7204 (Print) ISSN 1817-7239 (Online)

ЗЕМЛЯРОБСТВА І РАСЛІНАВОДСТВА

AGRICULTURE AND PLANT CULTIVATION

УДК [634.74:582.976]:581.143.6 https://doi.org/10.29235/1817-7204-2023-61-1-34-47 Поступила в редакцию 01.04.2022 Received 01.04.2022

Е. В. Колбанова

Институт плодоводства, Национальная академия наук Беларуси, Самохваловичи, Республика Беларусь

КЛОНАЛЬНОЕ МИКРОРАЗМНОЖЕНИЕ БЕЛОРУССКИХ СОРТОВ ЖИМОЛОСТИ СИНЕЙ (LONICERA CAERULEA L. VAR. KAMTSCHATICA)

Аннотация. Для сортов жимолости синей белорусской селекции Зинри и Сінявокая предложена методика клонального микроразмножения для производства высококачественного посадочного материала. Введение в культуру *in vitro*: в период интенсивного роста побегов — 1-я декада июня. Экспланты — точки роста, выделенные из верхушечных и пазушных почек зеленых побегов. Питательная среда WPM, дополненная 6-БА в концентрации 1,0 мг/л. Собственно микроразмножение: питательная среда МS с увеличением концентрации хелата железа в 2 раза и добавлением 6-БА в концентрации 1,5 мг/л. Ризогенез *in vitro*: питательная среда МS с уменьшением концентрации макро- и микросолей и хелата железа в 2 раза, пониженным содержанием сахарозы (20 г/л), с добавлением ИМК в концентрации 1,5—2,0 мг/л. Адаптация *ex vitro*: субстрат агроперлит. Сократить затраты на получение посадочного материала можно путем исключения этапа укоренения *in vitro* из схемы клонального микроразмножения. Проводить одновременное прямое укоренение *ex vitro* и адаптацию растений-регенерантов на субстрате мох *Sphagnum* L. с поверхностным слоем (0,5 см) торфа. Длительное хранение (до 12 мес.) при низких положительных температурах (+3—4 °C) в условиях бытового холодильника осуществлять на стадии укоренения (среда МS с уменьшением концентрации макро- и микросолей и хелата железа в 2 раза, пониженным содержанием сахарозы — 20 г/л, ИМК — 1,0 мг/л).

Ключевые слова: жимолость синяя, Зинри, Сінявокая, микроразмножение, укоренение *in vitro*, прямое укоренение *ex vitro*, *Sphagnum L.*, длительное хладохранение

Для цитирования: Колбанова, Е. В. Клональное микроразмножение белорусских сортов жимолости синей ($Lonicera\ caerulea\ L.\ var.\ kamtschatica$) / Е. В. Колбанова // Вес. Нац. акад. навук Беларусі. Сер. аграр. навук. -2023.- Т. 61, № 1. - С. 34–47. https://doi.org/10.29235/1817-7204-2023-61-1-34-47

Elena V. Kolbanova

Institute for Fruit Growing, National Academy of Sciences of Belarus, Samokhvalovichy, Republic of Belarus

MICROPROPAGATION OF BELARUSIAN CULTIVARS OF BLUE HONEYSUCKLE (LONICERA CAERULEA L. VAR. KAMTSCHATICA)

Abstract. For blue honeysuckle cultivars of Belarusian selection (Zinri and Sinyavokaya), a method of micropropagation for the production of high-quality planting material is proposed. Initiation of *in vitro* culture: in the period of intensive growth of shoots – the first decade of June. Explants were apical points isolated from the apical and axillary buds of green shoots. The nutrient medium was WPM supplemented with 6-BA at a concentration of 1.0 mg/l. Micropropagation stage: MS medium containing double strength iron chelate with 1.5 mg/l of 6-BA. *In vitro* rhizogenesis: in MS medium the concentration of macroand microsalts and iron chelate was reduced to half strength, the sucrose concentration was reduced to 20 g/l, IBA – 1.5–2.0 mg/l). *Ex vitro* adaptation: substrate – perlite. It is possible to reduce the cost of obtaining the planting material by eliminating *in vitro* rooting stage from micropropagation scheme. Simultaneous direct *ex vitro* rooting and adaptation of microplants should be carried out on the substrate of *Sphagnum* L. moss with a surface layer (0.5 cm) of peat. Long-term storage (up to 12 months) at low positive temperatures (+3–4 °C) in refrigerator should be carried out at rooting stage (in MS medium the concentration of macro- and microsalts and iron chelate was reduced to half strength, the sucrose concentration was reduced to 20 g/l, IBA – 1.0 mg/l).

Keywords: blue honeysuckle, Zinri, Sinyavokaya, micropropagation, *in vitro* rooting, direct *ex vitro* rooting, *Sphagnum* L., long-term cold storage

For citation: Kolbanova E. V. Micropropagation of belarusian cultivars of blue honeysuckle (*Lonicera caerulea* L. var. *kamtschatica*). *Vestsi Natsyyanal'nay akademii navuk Belarusi. Seryya agrarnykh navuk* = *Proceedings of the National Academy of Sciences of Belarus. Agrarian series*, 2023, vol. 61, no. 1, pp. 34–47 (in Russian). https://doi.org/10.29235/1817-7204-2023-61-1-34-47

Введение. Жимолость синяя — нетрадиционная ягодная культура, которая ценится за очень ранний срок плодоношения (плоды созревают раньше, чем у земляники садовой на несколько недель), витаминную ценность и диетические качества плодов. В Институте плодоводства Научно-практического центра НАН Беларуси по картофелеводству и плодоовощеводству выведено два сорта жимолости синей — Зинри и Сінявокая.

Сорт Зинри получен от свободного опыления жимолости камчатской. Раннего срока созревания, скороплодный (вступает в плодоношение на 3-й год после посадки двухлетними саженцами), зимостойкий, крупноплодный (средняя масса 1,0 г, максимальная масса плодов 1,3 г), плоды не осыпаются. Сорт устойчив к мучнистой росе. Средняя урожайность 2,3 кг/куст, дегустационная оценка свежих плодов 4,3 балла [1].

Сорт Сінявокая получен от свободного опыления жимолости камчатской. Среднего срока созревания, скороплодный (вступает в плодоношение на 3-й год после посадки двухлетними саженцами), зимостойкий, крупноплодный (средняя масса 1,0 г, максимальная масса плодов 1,3 г), плоды не осыпаются. Сорт устойчив к мучнистой росе. Средняя урожайность 2,5 кг/куст. Дегустационная оценка свежих плодов 4,5 балла [2].

Для ускоренного производства селекционных новинок и высококачественного посадочного материала жимолости синей в промышленных объемах экономически выгодным является использование культуры тканей.

Первым этапом клонального микроразмножения является выбор подходящего экспланта для введения в культуру, его стерилизация и культивирование на определенной питательной среде. Эксплантами для введения в культуру *in vitro* жимолости синей (*Lonicera caerulea* L.) могут служить апексы и точки роста, выделенные из верхушечных и пазушных почек [3–5], верхушечные и пазушные почки [6, 7], а также микрочеренки [5]. В качестве основного стерилизующего агента используются различные вещества: 33%-й раствор перекиси водорода [4], 0,15%-й раствор сулемы [3], 0,2%-й раствор сульфата ртути [8], 6%-й [9] и 10%-й растворы гипохлорита кальция [6, 10], 10%-й раствор гипохлорита натрия [8] и отбеливатель АСЕ (20%-й раствор) [7].

Для инициации культуры *in vitro* жимолости синей используют среду Гамборга B5 с добавлением тидиазурона в концентрации 0,2 мг/л [9], полную среду MS [3, 6–8, 11, 12] и среду MS с пониженным содержанием NH_4 [4] с добавлением 6-БА в различных концентрациях: 0,2 мг/л [4], 0,5 мг/л [7], 1,0 мг/л [6] или сочетание 6-БА (0,5 мг/л) с ИМК (0,1 мг/л) [11].

Не менее важным для инициации культуры *in vitro* является срок введения. В зимний период при введении в культуру *in vitro* жимолости синей целесообразно использовать для введения побеги, искусственно проснувшиеся в светокамерах при температуре 20–22 °C, так как их зараженность сапрофитной микрофлорой будет ниже по сравнению с эксплантами, взятыми непосредственно с растений, произрастающих в полевых условиях [13]; способ предварительного проращивания спящих почек использовали и для введения *Lonicera japonica* Thunb. [14].

На этапе собственно микроразмножения растений ключевым моментом является правильно подобранная питательная среда и фитогормональный комплекс, обеспечивающие высокий коэффициент размножения. Для жимолости синей (Lonicera caerulea L.) чаще используется среда MS [3, 4, 6–8, 10–12, 15, 16].

Успешность этапа ризогенеза *in vitro* может зависеть от ряда факторов: минерального состава питательной среды, источника и концентрации углеводов, стимуляторов корнеобразования и их концентрации, сортовых особенностей. Для укоренения *in vitro* микропобегов жимолости синей успешно используются среды: МS, содержащие 1/3 макро- и микросолей [3] или 1/2 макро- и микросолей [8, 17], полная МS [8, 15], WPM [6], Андерсона [15], Гамборга В5 [9]. Индукторами ризогенеза могут служить ИМК, ИУК и НУК как по отдельности, так и в сочетании друг с другом [3, 4, 6, 8, 9, 15, 17].

Этап адаптации *ex vitro* растений жимолости синей успешно проходит на торфяном субстрате [9]. По данным [6], использование торфа в сочетании с AgroAquaGel (4 г/л) при адаптации *ex vitro* укорененных микропобегов жимолости синей позволяет получать растения лучшего качества, чем при использовании чистого торфа. Согласно исследованиям В. Н. Сорокопудова с соавторами [17] высадку укорененных *in vitro* микрорастений жимолости синей можно осуществлять в стерильный субстрат, состоящий из смеси торфа с перлитом или песком в соотношении (3–4):1, 100%-ю приживаемость позволяла достичь предпосадочная обработка в течение 12–16 ч микрорастений в растворе борной кислоты ($(1,5\times10^{-4})-(1,5\times10^{-3})$ М). Прямое укоренение *ex vitro* в «плавающем» перлите было успешным для жимолости сорта Atut [7].

Все этапы клонального микроразмножения жимолости синей – введение в культуру *in vitro*, собственно микроразмножение, укоренение *in vitro*, адаптация *ex vitro* предварительно укорененных растений – были ранее отработаны в отделе биотехнологии Института плодоводства на сортах Волхова, Голубое веретено, Крупноплодная, Павловская [18]. Также было показано, что, исключая из этой классической схемы клонального микроразмножения этап укоренения *in vitro*, можно напрямую получать растения, адаптированные к нестерильным условиям и тем самым удешевлять производство высококачественного посадочного материала жимолости [19].

Цель работы — апробировать ранее разработанную методику клонального микроразмножения жимолости синей для белорусских сортов Зинри и Сінявокая, оценить возможность их сохранения *in vitro* при длительном хладохранении.

Материалы и методы исследования. Исследования проводили в отделе биотехнологии Института плодоводства в 2019–2021 гг. Объекты исследований: сорта жимолости (*Lonicera caerulea* L. var. *kamtschatica*) белорусской селекции Зинри, Сінявокая.

Введение в культуру іп vitro. Выделение эксплантов проводили в 1-й декаде июня (фаза интенсивного роста побегов); зеленые верхушки побегов длиной до 12 см срезали с 7- и 16-летних растений жимолости сорта Зинри и с 3-летних растений жимолости сорта Сінявокая, растущих в полевых условиях.

Экспланты: 1) точки роста размером около 1,0 мм, вычлененные из верхушечных и пазушных почек побегов текущего года с помощью бинокулярного микроскопа Olympus-SZ61; 2) одноузловые черенки 1–1,5 см.

Схема стерилизации: 35 мин - 0,5%-й оксихом (нестерильно), далее в ламинар-боксе: 1 мин - 70%-й этанол; 5 мин - 30%-я перекись водорода; 5 мин - промывка стерильной дистиллированной водой.

Питательная среда: WPM 1,0 — макро- и микросоли, FeNa-EDTA по WPM, витамины B_1 — 1,0 мг/л, B_6 , PP — по 0,5 мг/л, глицин — 2 мг/л, мезоинозит — 100 мг/л, с добавлением 6-БА в концентрации 1,0 мг/л, сахароза — 30 г/л, агар — 5,8 г/л (рН 5,6—5,7).

Экспланты высаживали в пробирки 160×16 мм с объемом питательной среды 3 мл. Длительность субкультивирования — 4 недели.

Микроразмножение. Питательная среда (1-й пассаж): WPM 1,0 — макро- и микросоли, FeNa-EDTA по WPM, витамины $B_1 - 1,0$ мг/л, B_6 , PP — по 0,5 мг/л, глицин — 2 мг/л, мезоинозит — 100 мг/л, с добавлением 6-БА в концентрации 1,0 мг/л, сахароза — 30 г/л, агар — 5,8 г/л (рН 5,6—5,7). Питательные среды (2-й пассаж):

- 1) MS 1,5: макро- и микросоли по MS, FeNa-EDTA по MS увеличен в 2 раза, витамины B_1 , B_6 , PP по 0,5 мг/л, витамин C-1 мг/л, глицин 2 мг/л, мезоинозит 100 мг/л, с добавлением 6-БА в концентрации 1,5 мг/л, сахароза 30 г/л, агар 5,8 г/л (рН 5,6—5,7);
- 2) WPM 1,5: макро- и микросоли, FeNa-EDTA по WPM, витамины $B_1-1,0$ мг/л, B_6 , PP по 0,5 мг/л, глицин 2 мг/л, мезоинозит 100 мг/л, с добавлением 6-БА в концентрации 1,5 мг/л, сахароза 30 г/л, агар 5,8 г/л (рН 5,6–5,7).

Питательная среда (3-й пассаж): макро- и микросоли по MS, FeNa-EDTA по MS увеличен в 2 раза, витамины B_1 , B_6 , PP - по 0,5 мг/л, витамин C - 1 мг/л, глицин - 2 мг/л, мезоинозит - 100 мг/л, с добавлением 6-БА в концентрациях 1,0; 1,5 и 2,0 мг/л, сахароза - 30 г/л, агар - 5,8 г/л (pH 5,6–5,7).

Питательная среда (4-й и последующие пассажи): MS 1,5 — макро- и микросоли по MS, FeNa-EDTA по MS увеличен в 2 раза, витамины B_1 , B_6 , PP — по 0,5 мг/л, витамин C — 1 мг/л, глицин —

2 мг/л, мезоинозит -100 мг/л, с добавлением 6-БА в концентрации 1,5 мг/л, сахароза -30 г/л, агар -5.8 г/л (рН 5.6-5.7).

Ризогенез іп vitro. Питательная среда: 1/2 макро- и микросолей по MS, 1/2 FeNa-EDTA по MS, витамины B_1 , B_6 , PP – по 0.5 мг/л, глицин – 2 мг/л, с добавлением β -индолилмасляной кислоты (ИМК) в концентрациях 1.0; 1.5 и 2.0 мг/л, с пониженным содержанием сахарозы – 20 г/л, агар – 5.8 г/л (pH 5.6–5.7).

Растения-регенеранты на этапах микроразмножения и ризогенеза *in vitro* культивировали в пробирках размером 220×22 мм с объемом питательной среды 10 мл. Длительность субкультивирования – 6 недель.

Условия культивирования эксплантов *in vitro* на этапах введения в культуру, микроразмножения, ризогенеза: освещение (лампы NARVA LT, 36 W) - 2,5-3 тыс. лк, температура - 20-22 °C и фотопериод - 16/8 ч.

Адаптация в условиях ех vitro. Растения-регенеранты после этапа ризогенеза in vitro высаживали в кассеты объемом 50 мл в агроперлит (время адаптации – апрель – май). Кассеты с растениями накрывали полиэтиленовой пленкой, создавая условия повышенной влажности до тех пор, пока они не начинали трогаться в рост. Полив производили дистиллированной водой. Через 8 недель прижившиеся растения пересаживали в горшки размером $9 \times 9 \times 10$ см в нестерильный торфяной субстрат (смесь торфа «Двина» и агроперлита в соотношении 3:1).

Одновременное прямое укоренение ех vitro и адаптация. Для одновременного прямого укоренения *ех vitro* и адаптации использовали микропобеги, культивируемые в пробирках (размер 220×22 мм) на стадии микроразмножения на среде MS с добавлением 6-БА в концентрации 1,5 мг/л. Для прямого укоренения *ех vitro* использовали мини-парники размером $450 \times 200 \times 70$ мм (расстояние между рядами -15-20 мм, в ряду -15-17 мм). Субстрат для укоренения: мох *Sphagnum* L. с поверхностным слоем (0,5 см) торфа «Двина» (субстрат нестерильный). Мох *Sphagnum* L. после сбора был высушен и хранился в высушенном виде. Перед использованием мох пропитывали водой. Длительность периода прямого укоренения *ex vitro* -8 недель.

Влияние сроков посадки на прямое укоренение *ex vitro* изучали в следующие периоды: январь — февраль, апрель — май, июнь — июль, август — сентябрь, сентябрь — октябрь, ноябрь — декабрь.

Условия адаптации и прямого укоренения *ex vitro*: освещение (лампы NARVA LT, 36 W) - 2,5-3 тыс. лк, температура - 22-24 °C и фотопериод 16/8 ч.

Длительное хладохранение жимолости синей при температуре +3-4 °C в условиях бытового холодильника. Питательные среды:

- 1) MS 1,5: макро- и микросоли по MS, FeNa-EDTA по MS увеличен в 2 раза, витамины B_1 , B_6 , PP по 0,5 мг/л, витамин C 1 мг/л, глицин 2 мг/л, мезоинозит 100 мг/л, с добавлением 6-БА в концентрации 1,5 мг/л, сахароза 30 г/л, агар 5,8 г/л (рН 5,6—5,7);
- 2) MS 1,5Fe: макро- и микросоли по MS, Ferric-EDDHA (*Duchefa Biochemie*) 100 мг/л, витамины B_1 , B_6 , PP по 0,5 мг/л, витамин C 1 мг/л, глицин 2 мг/л, мезоинозит 100 мг/л, с добавлением 6-БА в концентрации 1,5 мг/л, сахароза 30 г/л, агар 5,8 г/л (рН 5,6–5,7);
- 3) Уж: 1/2 макро- и микросолей по MS, 1/2 FeNa-EDTA по MS, витамины B_1 , B_6 , PP по 0,5 мг/л, глицин 2 мг/л, с добавлением β -индолилмасляной кислоты (ИМК) в концентрации 1,0 мг/л, с пониженным содержанием сахарозы 20 г/л, агар 5,8 г/л (рН 5,6–5,7).

Для длительного хладохранения при температуре +3-4 °C в условиях бытового холодильника «Атлант» растения-регенеранты жимолости синей по 2 шт. высаживали в пробирки размером 220 × 22 мм с объемом питательной среды 10 мл на стадии микроразмножения (среды MS 1,5 и MS 1,5Fe, отличающиеся источником железа) и на стадии укоренения (среда Уж). Перед размещением на хладохранение растения-регенеранты культивировались *in vitro* при условиях: освещение (лампы NARVA LT, 36 W) - 2,5-3 тыс. лк, температура - 20-22 °C и фотопериод - 16/8 ч на стадии микроразмножения (7 дней) и на стадии укоренения (21 день). Длительность хладохранения - 12 мес.

Восстановление роста и развития после длительного хладохранения. Растения-регенеранты, сохранившие визуальную жизнеспособность, для восстановления развития пересаживались на питательную среду для микроразмножения: MS 1,5 — макро- и микросоли по MS, FeNa-EDTA

по MS увеличен в 2 раза, витамины B_1 , B_6 , PP- по 0,5 мг/л, витамин C-1 мг/л, глицин -2 мг/л, мезоинозит -100 мг/л, с добавлением 6-БА в концентрации 1,5 мг/л, сахароза -30 г/л, агар -5,8 г/л (рН 5,6–5,7). Пробирки с растениями-регенерантами, вынутые из холодильника, до пересадки 7 дней находились в культуральной комнате при условиях: освещение (лампы NARVA LT, 36 W) -2,5–3 тыс. лк, температура -20–22 °C и фотопериод -16/8 ч.

Статистическую обработку проводили с помощью Statistica 10.0, используя ANOVA, однофакторный и двухфакторный анализ, критерий Дункана (при p < 0.05) для сравнения средних величин (n = 3).

Результаты и их обсуждение. *Введение в культуру in vitro*. Введение в культуру *in vitro* сортов Зинри и Сінявокая проводили в период интенсивного роста побегов (1-я декада июня) с использованием питательной среды WPM. Данный срок введения в культуру *in vitro* и питательная среда для инициации эксплантов были выбраны как наилучшие на основании ранее полученных экспериментальных данных для сортов жимолости Крупноплодная, Голубое веретено, Павловская и Волхова [18, 20].

В ходе исследований установлено, что на выход стерильных эксплантов (активно регенерирующих и неразвивающихся эксплантов), инфицированных эксплантов при введении в культуру *in vitro* достоверно влияют сортовые особенности (p < 0.05), тип вводимого экспланта (p < 0.001), а также два фактора (сорт × тип вводимого экспланта) (p < 0.01) вместе. На выход некротировавших эксплантов не оказывают влияния сортовые особенности вводимых эксплантов.

Полученные результаты показали, что для введения в культуру *in vitro* сортов жимолости Зинри и Сінявокая, как и для сортов, ранее изученных (Крупноплодная, Голубое веретено, Павловская и Волхова) [18, 20], эффективным является введение точек роста, выделенных из верхушечных и пазушных почек побегов текущего года (32,79 и 34,46 % стерильных, активно регенерирующих эксплантов для Зинри и Сінявокая соответственно). При введении крупных эксплантов (одноузловых черенков) стерильные, активно регенерирующие экспланты были получены только у сорта Зинри, их выход составил всего 12,45 % (рис. 1). Большая часть крупных эксплантов как у сорта Зинри (54,95 %), так и у сорта Сінявокая (83,33 %) были поражены грибной или бактериальной инфекцией (табл. 1).

В среднем регенерационная активность сортов была невысокая: 22,62 % (Зинри) и 17,23 % (Сінявокая) без учета типа вводимого экспланта (см. табл. 1), что согласуется с данными для ранее изученных сортов Крупноплодная (19,30 %), Голубое веретено (20,15 %), Павловская (13,85 %),

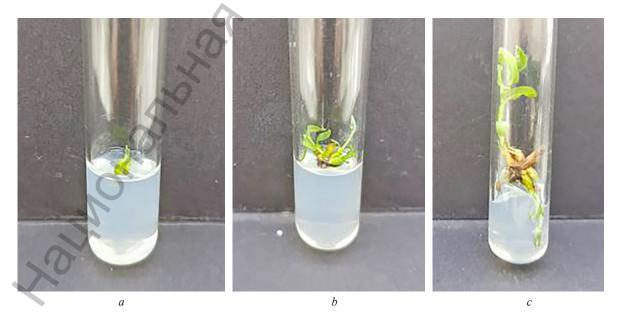


Рис. 1. Сорт Зинри через 4 недели после введения в культуру *in vitro*: a – точка роста; b, c – одноузловой черенок

Fig. 1. Cultivar Zinri after 4 weeks of initiation stage: a – apical point; b, c – single-node cutting

Таблица 1. Эффективность этапа введения в культуру *in vitro* жимолости синей сортов Зинри и Сінявокая (питательная среда WPM 1,0, введение – 1-я декада июня)

Table	1. Efficiency of initiation stage for blue honeysuckle cultivars Zinri and Sinyavokaya	1
	(nutrient medium WPM 1.0, in vitro initiation in the 1st decade of June)	

Сорт Тип вводимого экспланта		Hydrogyyg 9/	II	Количество стерильных эксплантов	
		Инфекция, %	Некроз, %	активно регенерирующих, %	неразвивающихся, %
Зинри Точка роста		0 a	$43,36 \pm 0,76 \text{ bc}$	32,79 ± 2,64 a	$23,85 \pm 2,47$ c
	Одноузловой черенок	$54,95 \pm 1,10 \text{ b}$	$32,60 \pm 3,0 \text{ b}$	$12,45 \pm 2,40 \text{ b}$	0 a
Сінявокая	Точка роста	0 a	52,0 1± 3,23 c	34,46 ±2 ,52 a	$13,55 \pm 1,01 \text{ b}$
Одноузловой черенок		$83,33 \pm 8,33$ c	$16,67 \pm 8,33$ a	0 с	0 a
Среднее по фактору А (сорт)					
Зинри		27,47 A	37,98 A	22,62 A	11,93 B
Сінявокая		41,67 B	34,34 A	17,23 B 6,77 A	
Среднее по фактору В (тип вводимого экспланта)					
Точка роста		0 C	47,69 C	33,63 C	18,7 D
Одноузловой	і черенок	69,14 D	24,63 B	6,23 D	0 C

 Π р и м е ч а н и е. Данные с одинаковыми буквами по столбцам статистически не различаются при p < 0.05 (критерий Дункана). Данные отображены в виде среднее значение \pm стандартная ошибка. То же в таблицах 2–7, 9.

N o t e. Data with the same letters in columns are not statistically different at $p \le 0.05$ (Duncan criterion). Data are shown as mean \pm standard error. Same in Tables 2–7, 9.

Волхова (17,73 %), где мы предположили, что на низкую регенерационную активность оказал влияние возраст маточных растений, с которых срезали побеги для введения в культуру *in vitro* [18, 20].

На примере сорта Зинри двухфакторный анализ показал, что возраст маточного насаждения (в пределах 16 лет), с которого берутся черенки, не оказывает влияния на эффективность введения в культуру *in vitro* жимолости синей. В среднем регенерационная активность эксплантов (без учета типа вводимого экспланта) с маточного насаждения в возрасте 7 лет составила 19,53 % и с маточного насаждения в возрасте 16 лет -24,99 % (табл. 2).

Таблица 2. Влияние возраста маточного насаждения на эффективность введения в культуру *in vitro* жимолости синей (сорт Зинри, питательная среда WPM 1,0, введение – 1-я декада июня)

Table 2. Effect of the age of nursery on the efficiency of *in vitro* culture initiation of blue honeysuckle (cultivar Zinri, nutrient medium WPM 1.0, *in vitro* initiation in the 1st decade of June)

Возраст маточного Тип вводимого экспланта		Инфекция, %	H	Количество стерильных эксплантов	
(фактор А)	насаждения (фактор A) (фактор B)		Некроз, %	активно регенерирующих, %	неразвивающихся, %
7 лет	Точка роста	0 a	$47,62 \pm 3,06$ c	$29,52 \pm 1,98$ a	$22,86 \pm 4,79 \text{ b}$
	Одноузловой черенок	$60,32 \pm 3,18$ c	$30,16 \pm 1,59$ a	9,53 ± 4,76 b	0 a
16 лет	Точка роста	0 a	$40,50 \pm 2,14 \text{ bc}$	$34,82 \pm 0,87 \text{ a}$	24,67 ± 1,60 b
Одноузловой черенок		$50,0 \pm 4,12 \text{ b}$	$34,92 \pm 4,20 \text{ ab}$	$15,08 \pm 0,79 \text{ b}$	0 a
	Среднее по фактору А (возраст маточного насаждения)				
7 лет 30,14 A 38,89 A 19,53 A 11,43			11,43 A		
16 лет		25,0 A	37,71 A	24,99 A	12,33 A
Среднее по фактору В (тип вводимого экспланта)					
Точка роста		0 B	44,06 C	32,21 B	23,76 C
Одноузловой че	еренок	55,16 C	32,54 B	12,30 C	0 B

Микроразмножение. На коэффициент размножения сортов Зинри и Сінявокая в 1-м пассаже на среде WPM 1,0 не оказали достоверного влияния ни сортовые особенности, ни тип ранее вводимого в культуру *in vitro* экспланта (табл. 3), что подтверждает целесообразность использования мелких эксплантов (точек роста) на этапе введения в культуру *in vitro*, обеспечивающих получение большего числа стерильных, активно регенерирующих эксплантов (в среднем 33,63 % без

Таблица 3. Коэффициент размножения жимолости синей в 1-м пассаже (среда WPM 1,0)

Table 3. Propagation rate of blue honeysuckle in the 1st subculture (medium WPM 1.0)
--

Сорт (фактор А)	Тип вводимого экспланта (фактор B)	Коэффициент размножения		
Зинри Точка роста из верхушечных и боковых почек		$2,08 \pm 0,09$ a		
Одноузловой черенок		$2,17 \pm 0,67$ a		
Сінявокая	Точка роста из верхушечных и боковых почек	$2,54 \pm 0,19$ a		
Одноузловой черенок		$2,67 \pm 0,07$ a		
Среднее по фактору А (сорт)				
Зинри		$2,12 \pm 0,30 \text{ A}$		
Сінявокая		$2,60 \pm 0,09 \text{ A}$		
Среднее по фактору В (тип вводимого экспланта)				
Точка роста из верхуше	ечных и боковых почек	$2,31 \pm 0,14 \text{ B}$		
Одноузловой черенок		$2,42 \pm 0,32 \text{ B}$		

Таблица 4. Влияние минерального состава питательной среды на коэффициент размножения жимолости синей (2-й пассаж, концентрация 6-БА – 1,5 мг/л)

Table 4. Effect of the mineral composition of nutrient medium on the propagation rate of blue honeysuckle (2nd subculture, 6-BA concentration – 1.5 mg/l)

Питательная среда (фактор В)	Коэффициент размножения				
WPM 1,5	1,89 ± 0,03 d				
MS 1,5	$4,26 \pm 0,09 \text{ b}$				
WPM 1,5	$3,70 \pm 0,30 \text{ c}$				
MS 1,5	6.0 ± 0 a				
Среднее по фактору А (сорт)					
	$3,07 \pm 0,53 \; \mathrm{B}$				
	$4,85 \pm 0,53 \text{ A}$				
Среднее по фактору В (питательная среда)					
	$2,79 \pm 0,43 \text{ D}$				
	5,13 ± 0,39 C				
	WPM 1,5 MS 1,5 WPM 1,5 MS 1,5 Среднее по фактору А				

учета сортовых особенностей), по сравнению с использованием крупных эксплантов (в среднем 6,23 % без учета сортовых особенностей) (см. табл. 1).

Установлено влияние на коэффициент размножения жимолости во 2-м пассаже сортовых особенностей (p < 0.001), минерального состава питательной среды (p < 0.001) и двух факторов вместе (p < 0.001). Высокий коэффициент размножения как у сорта Зинри (4,26), так и у сорта Сінявокая

Рис. 2. Растения-регенеранты жимолости синей сорта Зинри на питательных средах WPM 1,5 (слева) и MS 1,5

Fig. 2. Honeysuckle microplants of cv. Zinri on nutrient media WPM 1.5 (*left*) and MS 1.5

(6,0) был получен на среде MS, что в 1,6–2,2 раза превышало данный показатель на среде WPM (табл. 4, рис. 2), поэтому в 3-м пассаже при изучении влияния концентрации 6-БА на коэффициент размножения сортов Зинри и Сінявокая использовали питательную среду по прописи MS.

Не установлено достоверного влияния концентрации 6-БА в диапазоне от 1,0 до 2,0 мг/л в питательной среде МS на коэффициент размножения жимолости сортов Зинри и Сінявокая. У обоих сортов коэффициент был не ниже 5,1 (табл. 5), поэтому в 4-м и последующих пассажах при микроразмножении использовали питательную среду по прописи МS с добавлением 6-БА в концентрации 1,5 мг/л.

Согласно полученным ранее данным, высокий коэффициент размножения для сортов Крупноплодная (3,47), Голубое веретено (4,11), Павловская (2,80) и Волхова (3,90) также отмечен на среде МS с добавлением 6-БА в концентрации 1,5 мг/л [18, 21].

Таблица 5. Влияние концентрации 6-БА на коэффициент размножения жимолости синей (питательная среда MS, 3-й пассаж)

Table 5. Effect of 6-BA concentration on propagation rate of blue honeysuckle (MS medium, 3rd subculture)

Сорт (фактор А)	Концентрация 6-БА, мг/л (фактор В)	Коэффициент размножения		
Зинри 1,0		$5,12 \pm 0,21$ a		
	1,5	$5,88 \pm 0,30$ a		
	2,0	$5,29 \pm 0,25$ a		
Сінявокая	1,0	$5,79 \pm 0,11$ a		
	1,5	$5,19 \pm 0,34$ a		
2,0		$5,91 \pm 0,17$ a		
	Среднее по фактору А (сор	(m)		
Зинри		$5,43 \pm 0,17 \text{ A}$		
Сінявокая		$5,63 \pm 0,16$ A		
Среднее по фактору В (концентрация 6-БА)				
	1,0 мг/л 6-БА	$5,46 \pm 0,18$ B		
	1,5 мг/л 6-БА	$5,54 \pm 0,25 \text{ B}$		
	2,0 мг/л 6-БА	5,60 ± 0,19 B		

Ризогенез in vitro. В ходе исследований было установлено, что на этапе ризогенеза *in vitro* на выход укорененных растений-регенерантов сортов Зинри и Сінявокая значимое влияние оказывает только концентрация ИМК (p < 0.05). На среднюю высоту растений-регенерантов и среднее количество корней у растения значимое влияние (p < 0.001) оказали сортовые особенности, концентрация ИМК и эти два фактора вместе. Средняя длина корней статистически зависела только от сортовых особенностей растений-регенерантов (p < 0.001). Лучшие результаты по укореняемости *in vitro* растений-регенерантов обоих сортов получены при использовании ИМК в концентрации 1,5 и 2,0 мг/л. Доля укоренившихся растений при концентрации 1,5 мг/л ИМК составила 92,59 % для сорта Зинри и 87,58 % для сорта Сінявокая, при концентрации 2,0 мг/л — 88,89 и 88,37 % соответственно. Концентрация ИМК 1,0 мг/л в питательной среде показала достоверно более низкий выход укорененных растений: Сінявокая — 72,23 %, Зинри — 75,93 % (табл. 6).

Таблица 6. Влияние концентрации ИМК на укоренение *in vitro* жимолости синей Table 6. Effect of IBA concentration on *in vitro* rooting of blue honeysuckle

Сорт	Концентрация	Доля укоренившихся	Средняя высота	Среднее количество корней	Средняя длина корней
^	ИМК, мг/л	растений-регенерантов, %	растения-регенеранта, см	у растения-регенеранта, шт.	растения-регенеранта, см
Зинри	1,0	$75,93 \pm 0,93 \text{ b}$	$3,84 \pm 0,09 \text{ e}$	$1,90 \pm 0,13 \text{ cd}$	$3,10 \pm 0,09 \text{ bc}$
	1,5	$92,59 \pm 3,70 \text{ a}$	$5,23 \pm 0,06$ c	$1,62 \pm 0,07 \text{ d}$	$3,18 \pm 0,09 \text{ bc}$
	2,0	$88,89 \pm 6,41 \text{ a}$	$4,31 \pm 0,18 d$	$2,17 \pm 0,08$ c	3.0 ± 0.09 c
Сінявокая	1,0	$72,23 \pm 2,77 \text{ b}$	$5,44 \pm 0,14$ bc	2.0 ± 0.17 cd	$3,47 \pm 0,11 \text{ ab}$
	1,5	$87,58 \pm 2,89 \text{ a}$	$5,78 \pm 0,07 \text{ b}$	$2,65 \pm 0,18 \text{ b}$	$3,48 \pm 0,20 \text{ ab}$
	2,0	$88,37 \pm 2,53 \text{ a}$	$6,57 \pm 0,05$ a	$3,13 \pm 0,14$ a	$3,59 \pm 0,10$ a
	Среднее по фактору А (сорт)				
Зинри		$85,81 \pm 3,32 \text{ A}$	$4,46 \pm 0,21 \text{ B}$	$1,90 \pm 0,09 \text{ B}$	$3,09 \pm 0,05 \text{ B}$
Сінявокая		$82,73 \pm 2,96 \text{ A}$	$5,93 \pm 0,17 \text{ A}$	$2,59 \pm 0,18 \text{ A}$	$3,52 \pm 0,07 \text{ A}$
Среднее по фактору В (концентрация ИМК)					
	1,0	74,0 8± 1,55 C	$4,64 \pm 0,37 \text{ D}$	$1,95 \pm 0,10 \text{ D}$	$3,28 \pm 0,10 \text{ C}$
	1,5	90,08 ± 2,38 B	$5,50 \pm 0,13$ C	$2,14 \pm 0,24 \text{ D}$	3,33 ± 0,12 C
2	2,0	88,63 ± 3,09 B	$5,44 \pm 0,51$ C	$2,65 \pm 0,23$ C	3,30 ± 0,14 C

Средняя высота растений-регенерантов у двух сортов (без учета концентрации ИМК) статистически различалась: у сорта Зинри -4,46 см, у сорта Сінявокая -5,93 см. Анализ средних значений высоты растений-регенерантов по фактору В (концентрация ИМК) без учета сортовых особенностей показал, что статистически высота растений на питательных средах с добавлением ИМК в концентрации 1,5 и 2,0 мг/л не отличается (5,50 и 5,40 см соответственно).

Увеличение концентрации ИМК в питательной среде до 2 мг/л стимулировало закладку корней как у сорта Зинри (2,17 шт.), так и у сорта Сінявокая (3,13 шт.). Концентрация ИМК в питательной среде в диапазоне от 1,0 до 2,0 мг/л не оказала влияния на длину корневой системы у обоих сортов.

Адаптация в условиях ех vitro. В ходе однофакторного анализа установлено достоверное влияние (p < 0.05) только сортовых особенностей на среднюю длину стебля у растений изучаемых сортов. Высокие показатели адаптации в условиях ex vitro были отмечены как для сорта Зинри (84,85 %), так и для сорта Сінявокая (89,49 %) при использовании в качестве субстрата агроперлита, что согласуется с данными для ранее изученных сортов Павловская, Крупноплодная, Волхова, Голубое веретено (не менее 85 % адаптированных растений на агроперлите в течение всего календарного года) [18, 22]. На этапе адаптации ex vitro средняя длина стебля у растений-регенерантов сорта Сінявокая (8,71 см) статистически превышала данный показатель у сорта Зинри (6,90 см) (табл. 7), как и на этапе укоренения in vitro.

Таблица 7. Эффективность адаптации *ex vitro* растений-регенерантов жимолости синей, предварительно укорененных *in vitro* (субстрат агроперлит, срок адаптации – апрель – май)

Table 7. Efficiency of ex vitro adaptation of blue honeysuckle microplants previously rooted in vitro (substrate – agroperlite, adaptation time – April – May)

Сорт	Количество адаптированных растений-регенерантов, %	Средняя длина стебля растения-регенеранта, см	Средняя длина корней растения-регенеранта, см
Зинри	84,85 ± 1,51 a	$6,90 \pm 0,09 \text{ b}$	$7,11 \pm 0,19$ a
Сінявокая	89,49 ± 1,26 a	$8,71 \pm 0,22$ a	$7,11 \pm 0,29$ a

Одновременное прямое укоренение ex vitro и адаптация. Установлено достоверное влияние с высоким уровнем значимости (p < 0.001) срока укоренения, сортовых особенностей и двух факторов вместе (сорт × срок укоренения) на количество укоренившихся ex vitro микропобегов жимолости. Максимальный выход укорененных побегов (100 %) получен в весенний период (апрель — май) у обоих сортов. Хорошие показатели укореняемости отмечены также в летний период для обоих сортов: 80.0-83.67 % для Зинри и 76.11-78.07 % для сорта Сінявокая, а в раннеосенний период (сентябрь — октябрь) только для сорта Зинри: 77.12 % укорененных ex vitro микропобегов. В зимний, самый неблагоприятный для укоренения ex vitro, период можно получать не менее 42.67-48.61 % (сорт Сінявокая) и не менее 64.0-66.2 % (сорт Зинри) укорененных и уже адаптированных к нестерильным условиям растений жимолости этих сортов (табл. 8).

Таблица 8. Влияние срока посадки на результативность прямого укоренения *ex vitro* микропобегов жимолости синей (субстрат *Sphagnum* L. + слой торфа)

Table 8. Effect of planting time on the efficiency of direct *ex vitro* rooting of blue honeysuckle microshoots (substrate – *Sphagnum* L. + peat layer)

Срок укоренения	Количество укоренившихся ex vitro микропобегов, %		
	Зинри	Сінявокая	
Январь – февраль	64.0 ± 2.31 c	42,67 ± 2,67 e	
Апрель – май	$100 \pm 0 a$	$100 \pm 0 a$	
Июнь – июль	$80.0 \pm 4.38 \text{ b}$	$78,07 \pm 4,21 \text{ b}$	
Август – сентябрь	$83,67 \pm 4,65 \text{ b}$	$76,11 \pm 2,0 \text{ b}$	
Сентябрь – октябрь	$77,12 \pm 2,02 \text{ b}$	$51,46 \pm 3,52 d$	
Ноябрь – декабрь	$66,20 \pm 1,56$ c	$48,61 \pm 1,87 \text{ de}$	
	Среднее по фактору А (сорт)		
Зинри	$78,50 \pm 3,07 \text{ A}$		
Сінявокая	$66,15 \pm 5,0 \; \mathrm{B}$		
Сре	днее по фактору В (срок укорене	ния)	
Январь – февраль	$53,33 \pm 5,02 \text{ F}$		
Апрель – май	$100 \pm 0 \text{ C}$		
Июнь – июль	79,04 ± 2,75 D		
Август – сентябрь	79,89 ± 2,83 D		
Сентябрь – октябрь	$64,29 \pm 6,02 \; \mathrm{E}$		
Ноябрь – декабрь	$57,41 \pm 4,08 \text{ F}$		

 Π р и м е ч а н и е. Данные с одинаковыми буквами по столбцам и строкам статистически не различаются при p < 0.05 (критерий Дункана). Данные отображены в виде среднее значение \pm стандартная ошибка.

Note. Data with the same letters in columns and rows are not statistically different at p < 0.05 (Duncan criterion). Data are shown as mean \pm standard error.

Таким образом, анализ средних значений укореняемости микропобегов *ex vitro* по фактору A (сорт) без учета срока укоренения показал высокую ризогенную активность у сорта Зинри (78,5 % укоренившихся *ex vitro* микропобегов) и чуть ниже у сорта Сінявокая (66,15 %). Анализ средних значений укореняемости микропобегов *ex vitro* по фактору B (срок укоренения) без учета сортовых особенностей установил 100%-ю укореняемость микропобегов в весенний период (апрель – май), не менее 79 % в летний период и в осенне-зимний период – не менее 53 %.

Длительное хладохранение жимолости синей при температуре +3–4 °C в условиях бытового холодильника. В. А. Высоцкий [23] отмечает, что пробирочные растения жимолости сорта Нимфа на стадии пролиферации плохо реагируют на хранение при низких положительных температурах (+2 °C) в условиях бытового холодильника: к 18-му месяцу хранения наблюдалась их полная гибель. По данным И. А. Бъядовского [24], использование питательных сред с добавлением жасмоновой кислоты в концентрациях 0,5 и 1,0 мг/л обеспечивает сохранность микрорастений жимолости сортов Нимфа и Морена на уровне 14,3–28,6 % через 36 мес. депонирования при низких положительных температурах (+3–6 °C).

В своих исследованиях для длительного хладохранения мы использовали растения-регенеранты высотой более 2 см на стадии микроразмножения (среды MS 1,5 и MS 1,5 ге, отличающиеся формой железа) и на стадии укоренения (среда Уж). Установлено достоверное влияние питательной среды (p < 0.001) и двух факторов вместе (p < 0.05) (сорт × питательная среда) на количество жизнеспособных и некротировавших растений жимолости в ходе длительного хладохранения при температуре +3-4 °C. Сортовых различий при хладохранении жимолости не наблюдали: сорта жимолости Зинри и Сінявокая плохо перенесли хладохранение в течение 12 мес. (рис. 3).

Среднее значение количества жизнеспособных растений через 12 мес. (без учета питательной среды) для сорта Сінявокая составило 14,44 % и для сорта Зинри 17,56 %. Лучший показатель выживаемости при длительном хладохранении отмечен у растений-регенерантов, предварительно укорененных на среде для ризогенеза: у сорта Зинри 27,67 % жизнеспособных растений и у сорта Сінявокая — 23,33 %. Достоверное влияние двух различных хелатов железа: FeNa-EDTA, представленного в базовой среде МS, и Ferric-EDDHA на выживаемость растений-регенерантов установлено только у сорта Зинри. Замена FeNa-EDTA на Ferric-EDDHA в питательной среде МS увеличило количество жизнеспособных растений при длительном хладохранении сорта Зинри на 15 %, у сорта Сінявокая при использовании обеих форм железа достоверных различий по количеству растений, сохранивших жизнеспособность, не наблюдали, но тенденция в пользу использования Ferric-EDDHA сохранилась (табл. 9).

Рис. 3. Растения-регенеранты жимолости сорта Зинри после длительного хладохранения (12 мес.) при низких положительных температурах: a – среда MS 1,5; b – среда MS 1,5Fe; c – среда Уж

Fig. 3. Honeysuckle microplants of cv. Zinri after long-term cold storage (12 months) at low positive temperatures: a - medium MS 1.5; b - medium MS 1.5Fe; c - medium "Ym"

MS 1,5Fe

Таблица	9. Длительное хладохранение жимолости синей при температуре +3-4 °C
	в условиях бытового холодильника

Сорт	Питательная среда	Количество жизнеспособных растений-регенерантов, %	Количество некротировавших растений-регенерантов, %		
Зинри	MS 1,5	$5.0 \pm 0 \text{ d}$	95,0 ± 0 d		
_	MS 1,5Fe	$20.0 \pm 2.89 \text{ b}$	$80.0 \pm 2.89 \text{ b}$		
	Уж	27,67 ± 2,40 a	$72,33 \pm 2,40$ a		
Сінявокая	MS 1,5	$8,33 \pm 1,67 \text{ cd}$	$91,67 \pm 1,67 \text{ cd}$		
	MS 1,5Fe	$11,67 \pm 1,67$ c	88,33 ± 1,67 b		
	Уж	$23,33 \pm 1,67$ ab	$76,67 \pm 1,67$ ab		
	Средн	ее по фактору А (сорт)	. (7)		
Зинри		17,56 ± 3,50 A	82,44 ± 3,50 A		
Сінявокая		14,44 ± 2,42 A	85,56 ± 2,42 A		
	Среднее по фактору В (питательная среда)				
MS 1,5		6,67 ± 1,05 D	93,33 ± 1,05 D		

Table 9. Long-term cold storage of blue honeysuckle at a temperature of +3-4 °C in refrigerator

Восстановление роста и развития после длительного хладохранения. Растения-регенеранты, имеющие визуальную жизнеспособность после длительного хладохранения, были посажены на свежую питательную среду для микроразмножения МS 1,5. В течение 1-го пассажа (6 недель) рост и развитие растений как сорта Зинри, так и сорта Сінявокая восстановились.

 $15.83 \pm 2.38 \text{ C}$

 $25,50 \pm 1,63 \text{ B}$

 84.17 ± 2.39 C

Выводы. Введение в культуру *in vitro* сортов Зинри и Сінявокая эффективно проводить в период интенсивного роста побегов (1-я декада июня). В качестве эксплантов лучше использовать точки роста до 1,0 мм, выделенные из верхушечных и пазушных почек зеленых побегов и питательную среду WPM, дополненную 6-БА в концентрации 1,0 мг/л. Количество стерильных активно регенерирующих эксплантов при этом составило 32,79 и 34,46 % для сортов Зинри и Сінявокая соответственно. Возраст маточного насаждения в пределах 16 лет, с которого берутся черенки, не оказывает достоверного влияния на эффективность введения культуру *in vitro* жимолости синей.

На этапе собственно микроразмножения сортов Зинри и Сінявокая лучше использовать питательную среду MS с увеличением концентрации хелата железа в 2 раза и добавлением 6-БА в концентрации 1,5 мг/л (коэффициент размножения не менее 5,0 у обоих сортов).

На этапе ризогенеза *in vitro* сортов Зинри и Сінявокая лучше использовать питательную среду MS с уменьшением концентрации макро- и микросолей и хелата железа в 2 раза и пониженным содержанием сахарозы (20 г/л). Добавление ИМК в концентрации 1,5–2,0 мг/л обеспечивает не менее 87 % укорененных растений-регенерантов у обоих сортов.

Высокие показатели адаптации предварительно укорененных растений в условиях *ex vitro* (не менее 85 %) можно получить при использовании в качестве субстрата агроперлита.

В процессе клонального микроразмножения жимолости синей сортов Зинри и Сінявокая этап укоренения *in vitro* можно исключить, проведя одновременное прямое укоренение *ex vitro* и адаптацию растений-регенерантов, тем самым сокращая затраты на получение высококачественного посадочного материала. Для прямого укоренения *ex vitro* необходимо использовать субстрат на основе мха *Sphagnum* L. с поверхностным слоем (0,5 см) торфа. Выход укорененных микропобегов составляет 100 % в весенний период (апрель – май), не менее 79 % в летний период и не менее 53 % в осенне-зимний период.

Длительное хранение (до 12 мес.) жимолости синей сортов Зинри и Сінявокая при низких положительных температурах +3-4 °C в условиях бытового холодильника лучше осуществлять на стадии укоренения (среда MS с уменьшением концентрации макро- и микросолей и хелата железа в 2 раза, пониженным содержанием сахарозы -20 г/л, ИМК -1,0 мг/л). Количество жизнеспособных растений через 12 мес. хранения составило 27,67 % у сорта Зинри и 23,33 % у сорта Сінявокая.

Список использованных источников

- 1. Пигуль, М. Л. Новый сорт жимолости синей Зинри / М. Л. Пигуль // Плодоводство: науч. тр. / Нац. акад. наук Беларуси, Ин-т плодоводства. Самохваловичи, 2010. Т. 22. С. 200–206.
- 2. Пигуль, М. Л. Новый сорт жимолости синей Сінявокая / М. Л. Пигуль // Плодоводство: науч. тр. / Нац. акад. наук Беларуси, Ин-т плодоводства. Самохваловичи, 2016. Т. 28. С. 198–204.
- 3. Sedlák, J. In vitro propagation of blue honeysuckle / J. Sedlák, F. Paprštein // Hort. Sci. 2007. Vol. 34, № 4. P. 129–131. https://doi.org/10.17221/1871-HORTSCI
- 4. Панькова, О. А. Перспективы использования биотехнологических методов в системе производства оздоровленного посадочного материала жимолости синей в Удмуртии / О. А. Панькова // Аграр. наука Евро-Северо-Востока. 2009. № 1 (12). С. 43—47.
- 5. Акимова, С. В. Применение этиоляции на различных этапах микроклонального размножения жимолости (*Lonicera* L.) подсекции *Caeruleae* Rehd. / С. В. Акимова, Н. А. Семенова, А. Н. Викулина // Тр. Белорус. гос. ун-та. Сер.: Физиол., биохим. и молекуляр. основы функционирования биосистем. 2013. Т. 8, ч. 2. С. 33–37.
- 6. Dziedzic, E. Propagation of blue honeysuckle (*Lonicera caerulea* var. *kamtschatica* Pojark.) in *in vitro* culture / E. Dziedzic // J. Fruit Ornam. Plant Res. 2008. Vol. 16. P. 93–100.
- 7. In vitro propagation of Lonicera kamtschatica / A. Fira [et al.] // Agricultura Revistă de Știință și Practică Agricolă. 2014. № 1–2 (89–90). P. 90–99.
- 8. Marcelina, K.-M. Propagation of blue honeysuckles (*Lonicera caerulea* L.) in *in vitro* culture / K.-M. Marcelina, O. Ireneusz // J. Basic Appl. Sci. 2014. Vol. 10. P. 164–169. https://doi.org/10.6000/1927-5129.2014.10.22
- 9. In vitro propagation of blue honeysuckle (*Lonicera edulis*) / O. Ninjmaa [et al.] // Int. J. Res. Stud. Sci. Eng. Technol. 2015. Vol. 2, № 10. P. 57–61.
- 10. Получение *in vitro* культур жимолости синей сортов 'Лазурная', 'Аврора', 'Камчадалка', 'Ленинградский великан' / О. И. Махонина [и др.] // Биология клеток растений *in vitro* и биотехнология: тез. докл. XI Междунар. конф., Минск, 23–27 сент. 2018 г. / Нац. акад. наук Беларуси [и др.]; редкол.: В. Н. Решетников [и др.]. Минск, 2018. С. 146.
- 11. Семенова, Н. А. Совершенствование технологии размножения in vitro, условий адаптации и доращивания жимолости съедобной: автореф. дис. ... канд. с.-х. наук: 06.01.08 / Н. А. Семенова; Рос. гос. аграр. ун-т МСХА им. К. А. Тимирязева. М., 2016. 26 с.
- 12. Karhu, S. T. Axillary shoot proliferation of blue honeysuckle / S. T. Karhu // Plant Cell, Tissue Organ Culture. 1997. Vol. 48, N₂ 3. P. 195–201. https://doi.org/10.1023/A:1005842022064
- 13. Высоцкий, В. А. Клональное микроразмножение жимолости в производственных условиях / В. А. Высоцкий, В. А. Валиков // Садоводство и виноградарство. 2014. № 6. С. 18–23.
- 14. Comparative study on different methods *Lonicera japonica* Thunb. Micropropagation and acclimatization / J. X. Hui [et al.] // J. Med. Plants Res. 2012. Vol. 6, N 27. P. 4389–4393. https://doi.org/10.5897/jmpr011.1715
- 15. Макаров, С. С. Влияние состава питательной среды на клональное микроразмножение жимолости съедобной / С. С. Макаров, Е. А. Калашникова // Плодоводство и ягодоводство России. 2017. Т. 49. С. 217–222.
- 16. Макаров, С. С. Влияние регуляторов роста на органогенез жимолости при клональном микроразмножении / С. С. Макаров, И. Б. Кузнецов // Вестн. НГАУ. 2018. № 4 (49). С. 36–42. https://doi.org/10.31677/2072-6724-2018-49-4-36-42
- 17. Сорокопудов, В. Н. Сорта съедобной жимолости: биология и основы культивирования / В. Н. Сорокопудов, А. Г. Куклина, М. Т. Упадышев. М.: ФГБНУ ВСТИСП, 2018. 160 с.
- 18. Колбанова, Е. В. Жимолость синяя / Е. В. Колбанова // Размножение плодовых, ягодных растений, винограда и хмеля в культуре *in vitro* / Н. В. Кухарчик [и др.]; под общ. ред. Н. В. Кухарчик. Минск, 2021. 123–163.
- 19. Колбанова, Е. В. Одновременное прямое укоренение *ex vitro* и адаптация микропобегов жимолости синей (*Lonicera caerulea* L. var. *kamtschatica*) / Е. В. Колбанова // Вес. Нац. акад. навук Беларусі. Сер. аграр. навук. 2020. Т. 58, № 3. С. 298–310. https://doi.org/10.29235/1817-7204-2020-58-3-298-310
- 20. Колбанова, Е. В. Введение в культуру *in vitro* сортов жимолости синей (*Lonicera caerulea* L. var. *kamtschatica*) / Е. В. Колбанова, С. Э. Семенас // Плодоводство: сб. науч. тр. / Нац. акад. наук Беларуси, Ин-т плодоводства. Минск, 2019. Т. 31. С. 162–168.
- 21. Колбанова, Е. В. Влияние фитогормонов в составе питательной среды на пролиферацию у растений-регенерантов сортов жимолости синей (*Lonicera caerulea* L. var. *kamtschatica*) / Е. В. Колбанова // Вес. Нац. акад. навук Беларусі. Сер. біял. навук. 2020. Т. 65, № 1. С. 88–97. https://doi.org/10.29235/1029-8940-2020-65-1-88-97
- 22. Колбанова, Е. В. Влияние различных субстратов и поры года на адаптацию *ex vitro* растений-регенерантов жимолости синей (*Lonicera caerulea* L. var. *kamtschatica*) / Е. В. Колбанова // Плодоводство: сб. науч. тр. / Нац. акад. наук Беларуси, Ин-т плодоводства. Минск, 2018. Т. 30. С. 159–164.
- 23. Высоцкий, В. А. Совершенствование методов сохранения ценных генотипов плодовых и ягодных культур *in vitro* / В. А. Высоцкий // Плодоводство и ягодоводство России. 2015. Т. 41. С. 69–73.
- 24. Бъядовский, И. А. Влияние жасмоновой кислоты и пониженной температуры на длительность хранения жимолости (*Lonicera*) в культуре *in vitro* / И. А. Бъядовский // Плодоводство и ягодоводство России. -2018. Т. 55. С. 64—68. https://doi.org/10.31676/2073-4948-2018-55-64-68

References

- 1. Pigul M. L. New cultivar honeysuckle Zinri. *Plodovodstvo: nauchnye trudy = Fruit growing: scientific works*. Samokhvalovichi, 2010, vol. 22, pp. 200–206 (in Russian).
- 2. Pigul M. L. New honeysuckle cultivar 'Sinyavokaya'. *Plodovodstvo: nauchnye trudy = Fruit growing: scientific works*. Samokhvalovichi, 2016, vol. 28, pp. 198–204 (in Russian).
- 3. Sedlák J., Paprštein F. In vitro propagation of blue honeysuckle. *Horticultural Science*, 2007, vol. 34, no. 4, pp. 129–131. https://doi.org/10.17221/1871-HORTSCI
- 4. Pan'kova O. A. Prospects for the use of biotechnological methods in system of production of healthy planting material of blue honeysuckle in Udmurtia. *Agrarnaya nauka Evro-Severo-Vostoka = Agricultural Science Euro-North-East*, 2009, no. 1 (12), pp. 43–47 (in Russian).
- 5. Akimova S. V., Semenova N. A., Vikulina A. N. Propagation of blue honeysuckle (*Caeruleae* Rehd.) With. *Trudy Belorusskogo gosudarstvennogo universiteta. Seriya: Fiziologicheskie, biokhimicheskie i molekulyarnye osnovy funktsionirovaniya biosiste*m [Proceedings of the Belarusian State University. Series of Physiological, Biochemical and Molecular Biology Sciences], 2013, vol. 8, pt. 2, pp. 33–37 (in Russian).
- 6. Dziedzic E. Propagation of blue honeysuckle (*Lonicera caerulea* var. *kamtschatica* Pojark.) in *in vitro* culture. *Journal of Fruit and Ornamental Plant Research*, 2008, vol. 16, pp. 93–100.
- 7. Fira A., Clapa D., Cristea V., Plopa C. *In vitro* propagation of *Lonicera kamtschatica*. *Agricultura Revistă de Știință și Practică Agricolă*, 2014, no. 1–2 (89–90), pp. 90–99.
- 8. Marcelina K.-M., Ireneusz O. Propagation of blue honeysuckles (*Lonicera caerulea* L.) in *in vitro* culture. *Journal of Basic & Applied Sciences*, 2014, vol. 10, pp. 164–169. https://doi.org/10.6000/1927-5129.2014.10.22
- 9. Ninjmaa O., Gereltuya P., Saranchimeg B., Narangoo A. *In vitro* propagation of blue honeysuckle (*Lonicera edulis*). *International Journal of Research Studies in Science, Engineering and Technology*, 2015, vol. 2, no. 10, pp. 57–61.
- 10. Makhonina O. I., Lastenko I. I., Chernousova I. A., Balkovskaya A. V., Filipenya V. L. Obtaining of *in vitro* culture of blue honeysuckle cultivars 'Lazurnaya', 'Avrora', 'Kamchadalka', 'Leningradskiy velikan. *Biologiya kletok rastenii in vitro i biotekhnologiya: tezisy dokladov XI Mezhdunarodnoi konferentsii, Minsk, 23–27 sentyabrya 2018 g.* [The biology of plant cells in vitro and biotechnology: theses of reports XI *International* conference, Minsk, 23–27 September 2018 g.]. Minsk, 2018, p. 146 (in Russian).
- 11. Semenova N. A. Improving of in vitro propagation technology, conditions of adaptation and growing of edible honeysuckle. Moscow, 2016. 26 p. (in Russian).
- 12. Karhu S. T. Axillary shoot proliferation of blue honeysuckle. *Plant Cell, Tissue Organ Culture*, 1997, vol. 48, no. 3, pp. 195–201. https://doi.org/10.1023/A:1005842022064
- 13. Vysotskiy V. A., Valikov V. A. Clonal micropropagation of honey suckle for commercial purposes. *Sadovodstvo i vino-gradarstvo = Horticulture and Viticulture*, 2014, no. 6, pp. 18–23 (in Russian).
- 14. Hui J. X., Wen S. C., Hua Z. Y., Ming L. X. Comparative study on different methods *Lonicera japonica* Thunb. Micropropagation and acclimatization. *Journal of Medicinal Plants Research*, 2012, vol. 6, no. 27, pp. 4389–4393. https://doi.org/10.5897/jmpr011.1715
- 15. Makarov S. S., Kalashnikova E. A. Influence of nutrient medium composition on clonal micropropagation of honeysuckle edible. *Plodovodstvo i yagodovodstvo Rossii = Pomiculture and Small Fruits Culture in Russia*, 2017, vol. 49, pp. 217–222 (in Russian).
- 16. Makarov S. S., Kuznetsova I. B. Influence of growth regulators on organogenesis of honeyberry when clonic micropropagation. *Vestnik NGAU = Bulletin of NSAU*, 2018, no. 4 (49), pp. 36–42 (in Russian). https://doi.org/10.31677/2072-6724-2018-49-4-36-42
- 17. Sorokopudov V. N., Kuklina A. G., Upadyshev M. T. *Cultivars of edible honeysuckle: biology and the basis of cultivation*. Moscow, All-Russian Selection and Technological Institute of Horticulture and Nursery, 2018. 160 p. (in Russian).
- 18. Kolbanova E. V. Blue honeysuckle. *Razmnozhenie plodovykh, yagodnykh rastenii, vinograda i khmelya v kul'ture in vitro* [Propagation of fruit and berry plants, grape and hop in in vitro culture]. Minsk, 2021, pp. 123–163 (in Russian).
- 19. Kolbanova E. V. Simultaneous direct *ex vitro* rooting and adaptation of the blue honeysuckle micro-sprouts (*Lonicera Caerulea* L. var. *kamtschatica*). *Vestsi Natsyyanal'nai akademii navuk Belarusi. Seryya agrarnykh navuk = Proceedings of the National Academy of Sciences of Belarus. Agrarian series*, 2020, vol. 58, no. 3, pp. 298–310 (in Russian). doi.org/10.29235/1817-7204-2020-58-3-298-310
- 20. Kolbanova E. V., Semenas S. E. Initiation of *in vitro* culture of the blue honeysuckle cultivars (*Lonicera caerulea* L. var. *kamtschatica*). *Plodovodstvo: sbornik nauchnykh trudov* = *Fruit growing: collection of scientific papers*. Samokhvalovichi, 2019, vol. 31, pp. 162–168 (in Russian).
- 21. Influence of fitohormones in the nutrient medium on the proliferation at the microplants of blue honeysuckle cultivars (Lonicera caerulea L. var. kamtschatica). Vestsi Natsyyanal'nai akademii navuk Belarusi. Seryya biyalagichnych navuk = Proceedings of the National Academy of Sciences of Belarus. Biological series, 2020, vol. 65, no. 1, pp. 88–97 (in Russian). https://doi.org/10.29235/1029-8940-2020-65-1-88-97
- 22. Kolbanova E. V. Various substrates and season of the year effect on honeysuckle (*Lonicera caerulea* L. var. *kamtschatica*) plant regenerants ex vitro adaptation. *Plodovodstvo: sbornik nauchnykh trudov* = *Fruit growing: collection of scientific papers*. Samokhvalovichi, 2018, vol. 30, pp. 159–164 (in Russian).
- 23. Vysotskiy V. A. Improving of maintenance in vitro technique for valuable genotypes of fruit trees and small fruit plants *Plodovodstvo i yagodovodstvo Rossii = Pomiculture and Small Fruits Culture in Russia*, 2015, vol. 41, pp. 69–73 (in Russian).

24. Bjadovskiy I. A. Effect of jasmonic acid and reduced temperature on the storage time of honeysuckle (*Lonicera*) in culture in vitro. *Plodovodstvo i yagodovodstvo Rossii = Pomiculture and Small Fruits Culture in Russia*, 2018, vol. 55, pp. 64–68 (in Russian). https://doi.org/10.31676/2073-4948-2018-55-64-68

Информация об авторе

Колбанова Елена Вячеславовна — кандидат биологических наук, доцент, заведующий лабораторией диагностики отдела биотехнологии, Институт плодоводства, Национальная академия наук Беларуси (ул. Ковалева, 2, 223013, аг. Самохваловичи, Минский район, Минская область. Республика Беларусь. E-mail: kolbanova@tut.by

Information about the author

Elena V. Kolbanova – Ph. D. (Biology), Associate Professor, Head of Diagnostic laboratory of the Biotechnology Department, Institute for Fruit Growing, National Academy of Sciences of Belarus (2, Kovaleva Str., 223013, agro-town Samokhvalovichy, Minsk District, Minsk Region, Republic of Belarus). E-mail: kolbanova@tut.by